首页|基于PRM-GCN的方面级情感分析研究

基于PRM-GCN的方面级情感分析研究

扫码查看
[目的]解决现有方面级情感分析研究利用情感知识增强句法依存图忽略了句法可达关系和各词间位置关系,且对语义信息提取不充分的问题.[方法]提出基于位置赋权可达矩阵和多空间语义信息提取的方面级情感分析模型.首先,利用可达矩阵将各词句法可达关系加入句法依存图,依据位置赋权机制修整可达矩阵增强上下文特征提取;其次,与情感增强依存图融合提取方面词特征,并使用多头自注意力机制结合图卷积网络学习多个特征空间的上下文语义信息;最后,将包含位置信息、语法信息、情感知识和语义信息的特征向量融合进行情感极性分类.[结果]与对比模型中较优者相比,在使用GloVe预训练语料库时,PRM-GCN-GloVe模型在数据集Lap14、Rest14、Rest15上的准确率分别提升了 1.00、1.25和0.76个百分点;在使用BERT时,PRM-GCN-BERT模型在数据集 Lap14、Rest14、Rest15 和 Rest16上的准确率分别提升了 0.50、0.22、1.98和0.31个百分点.[局限]未在中文等其他数据集上进行实验.[结论]所提出的模型提高了图卷积特征聚合效果,增强了上下文特征提取,提升了语义学习效果,有效提升了方面级情感分析的准确性.
Aspect-Based Sentiment Analysis Based on PRM-GCN
[Objective]This paper aims to address the problem in current aspect-based sentiment analysis research,where the use of sentiment knowledge to enhance syntactic dependency graphs overlooks syntactic reachability and positional relationships between words and does not adequately extract semantic information.[Methods]We proposed an aspect-based sentiment analysis model based on a position-weighted reachability matrix and multi-space semantic information extraction.First,we used a reachability matrix to incorporate syntactic reachability relationships between words into the syntactic dependency graph,and we employed position-weighting to adjust the matrix to enhance contextual feature extraction.Then,we integrated the sentiment features with the enhanced dependency graph to extract aspect word features.Third,we use the multi-head self-attention mechanism combined with a graph convolutional network(GCN)to learn contextual semantic information from multiple feature spaces.Finally,we fused feature vectors containing positional information,syntactic information,affective knowledge,and semantic information for sentiment polarity classification.[Results]Compared to the best-performing models,the proposed model improved accuracy on the Lap 14,Rest 14,and Rest 15 datasets by 1.00%,1.25%,and 0.76%.When using BERT,the PRM-GCN-BERT model's accuracy on the Lap14,Rest14,Rest15,and Rest16 datasets increased by 0.50%,0.22%,1.98%,and 0.31%.[Limitations]The proposed model was not applied to Chinese or other language datasets.[Conclusions]The proposed model enhances feature aggregation in graph convolutional networks,improves contextual feature extraction,and boosts semantic learning effectiveness,thereby significantly improving the accuracy of aspect-based sentiment analysis.

Aspect-Based Sentiment AnalysisReachability MatrixMulti-Head Self Attention MechanismGraph Convolutional NetworkPosition-Weight

余本功、曹成伟

展开 >

合肥工业大学管理学院 合肥 230009

合肥工业大学过程优化与智能决策教育部重点实验室 合肥 230009

方面级情感分析 可达矩阵 多头自注意力机制 图卷积网络 位置赋权

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(10)