首页|基于提示集成的少样本关系抽取方法

基于提示集成的少样本关系抽取方法

扫码查看
[目的]解决标注数据稀缺时基于提示学习关系抽取方法标签映射难以构建的问题.[方法]在提示模板中注入关系语义增强提示效果,利用提示集成对输入进行数据增强,通过实例级注意力机制在原型构建过程中提取重要特征.[结果]在公开数据集FewRel上,本文方法的准确率在4种少样本测试场景下分别超越了基线模型2.13个百分点、0.55个百分点、1.40个百分点和2.91个百分点.[局限]在提示模板构造上没有使用可学习的虚拟提示模板,在回答词表示上仍有优化空间.[结论]本文方法有效缓解了少样本场景下原型构建信息有限、准确性不足的问题,提升了模型在少样本关系抽取任务上的准确性.
Extracting Few-Shot Relation Based on Prompt Ensemble
[Objective]This paper addresses the challenge of constructing label mapping in prompt learning-based relation extraction methods when labeled data is scarce.[Methods]The proposed approach enhances prompt effectiveness by injecting relational semantics into the prompt template.Data augmentation is performed through prompt ensemble,and an instance-level attention mechanism is used to extract important features during the prototype construction process.[Results]On the public FewRel dataset,the accuracy of the proposed method surpasses the baseline model by 2.13%,0.55%,1.40%,and 2.91%in four few-shot test scenarios,respectively.[Limitations]The method does not utilize learnable virtual prompt templates in constructing prompt templates,and there is still room for improvement in the representation of answer words.[Conclusions]The proposed method effectively mitigates the problem of limited information and insufficient accuracy in prototype construction under few-shot scenarios,improving the model's accuracy in few-shot relation extraction tasks.

Relation ExtractionFew-Shot LearningPrompt LearningPrototype Network

徐豪帅、洪亮、侯雯君

展开 >

武汉大学信息管理学院 武汉 430072

武汉大学大数据研究院 武汉 430072

关系抽取 少样本学习 提示学习 原型网络

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(10)