首页|基于迁移学习增强的多标签多文档分类模型的补充性问答推荐研究

基于迁移学习增强的多标签多文档分类模型的补充性问答推荐研究

扫码查看
[目的]针对在线问答社区的问答文档识别和推荐补充性问答,提出一种基于迁移学习增强的多标签多文档分类模型的补充性问答推荐方法.[方法]提出新的特征与已有特征一起用于问答补充关系分类,建立迁移学习增强的多标签多文档分类模型,用于识别和推荐补充性问答.[结果]在知乎社区真实数据集上三个元任务的结果表明,本文所提推荐方法的精确度、召回率和F1值平均提升48.29%、15.75%和32.53%.[局限]仅将方法应用在知乎的健康问答主题上,未验证在不同平台与不同主题问答中的效果.[结论]本文所提推荐方法能够有效推荐补充性问答,帮助问答社区用户更加全面地获取问答,促进社区中知识的利用.
Supplementary Q&A Recommendation Based on Transfer Learning Enhanced Multi-Label Multi-Document Classifier
[Objective]This paper proposes a recommendation method for supplementary question-and-answer(Q&A)based on a multi-label,multi-document Q&A classification model enhanced by transfer learning.It aims to identify and recommend supplementary answers in online Q&A communities.[Methods]We introduced new features alongside existing ones to classify the supplementary relationships between questions and answers.Then,we established a transfer learning-enhanced multi-label,multi-document classification model to identify and recommend supplementary answers.[Results]We conducted three meta-tasks on real datasets from the Zhihu community.The proposed method improves precision,recall,and Fl score by 48.29%,15.75%,and 32.53%,respectively,on average.[Limitations]The method was only applied to health-related Q&A topics in Zhihu and has yet to be validated across different platforms or topics.[Conclusions]The proposed recommendation method effectively recommends supplementary answers.It helps users in Q&A communities obtain more comprehensive answers and promote knowledge utilization within the community.

Q&A RecommendationSupplementary Relationship Between Q&AsFew-Shot ClassificationMulti-Label Multi-Document Classification

李莹、李明

展开 >

中国石油大学(北京)经济管理学院 北京 102249

问答推荐 问答补充关系 小样本分类 多标签多文档分类

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(10)