首页|一种科研机构整体预算绩效评价预测方法

一种科研机构整体预算绩效评价预测方法

扫码查看
[目的]保证科研机构整体预算绩效评价的客观性、及时性和准确性,提升绩效评价工作效率.[方法]提出一种基于LightGBM的科研机构整体预算绩效评价预测方法,融合科研管理信息化系统多元数据,依据科研投入和成果产出数据与科研绩效间的相关性,利用机器学习算法分析和预测科研机构整体预算绩效评价结果.[结果]在科研机构整体预算绩效评价应用中,本文提出的绩效评价预测方法准确率为94.12%,预算绩效评价过程所需的人力资源由原来的10人减少至5人,时间成本由原来的38天左右降低至10天左右.[局限]部分绩效评价指标为主观指标,难以通过科研管理信息化系统中的业务数据进行量化.[结论]本文方法在整体预算绩效评价结果预测中表现优异,能够减少主观评价带来的公允性问题,同时还能节省预算绩效评价工作的人力资源和时间成本,提高绩效评价效率.
Predicting Overall Budget Performance Evaluation of Research Institutions
[Objective]This paper aims to ensure the objectivity,timeliness,and accuracy of the overall budget performance evaluation of research institutions,and to improve the efficiency of performance evaluation work.[Methods]We proposed a method for predicting research institutions'overall budget performance evaluation based on LightGBM.Our method integrates various data from scientific research management information systems.It uses machine learning algorithms to analyze and predict the overall budget performance evaluation results by correlating research inputs and outputs with performance.[Results]In the application of the overall budget performance evaluation of research institutions,the accuracy of the proposed method reached 94.12%.The human resources required for the budget performance evaluation process were reduced from 10 people to 5,and the time cost was shortened from 38 days to about 10 days.[Limitations]Some performance evaluation indicators are subjective and difficult to quantify using business data from scientific research management information systems.[Conclusions]The proposed method has excellent performance in predicting overall budget performance evaluation results.It reduces the fairness issues due to subjective evaluation,and saves the human resources and time costs in budget performance evaluation,thus improving their efficiency.

Budget Performance EvaluationMachine LearningLightGBM Algorithm

何峻、于建军、荣晓慧

展开 >

中国科学院大学经济与管理学院 北京 100190

中国科学院计算机网络信息中心 北京 100083

预算绩效评价 机器学习 LightGBM算法

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(10)