首页|基于文本图表征的中文隐式情感分析模型

基于文本图表征的中文隐式情感分析模型

扫码查看
[目的]为充分利用外部知识和上下文增强隐式情感文本,实现词级别的语义交互,本文提出一种基于文本图表征的中文隐式情感分析模型.[方法]首先,将目标句和上下文建模为以词为节点的文本图;然后,针对图中的词节点,通过外部知识链接得到语义拓展的文本图;最后,将所得文本图通过图注意力网络在节点间传递语义信息,再由Readout操作得到文本图表征.[结果]在公开的隐式情感分析数据集SMP2019-ECISA上进行模型评估,该模型F1值达到78.8%,较已有模型至少提高1.2个百分点.[局限]生成的文本图大小与文本长度相关,处理长文本时会导致较大的内存和计算开销.[结论]本文模型利用图结构从词级别建模外部知识、上下文和目标句的关联,可以有效地表征文本语义,提高隐式情感分析的准确率.
Analysis Model for Chinese Implicit Sentiment Based on Text Graph Representation
[Objective]This paper proposes a Chinese implicit sentiment analysis model based on text graph representation.It fully utilizes external knowledge and context to enhance implicit sentiment text and achieve word-level semantic interaction.[Methods]First,we modeled the target sentence and context as a text graph with words as nodes.Then,we obtained the semantic expansion of the word nodes in the graph through external knowledge linking.Finally,we used the Graph Attention Network to transfer semantic information between the nodes of this text graph.We also obtained the text graph representation through the Readout function.[Results]We evaluated the model on the publicly available implicit sentiment analysis dataset SMP2019-ECISA.Its F1 score reached 78.8%,at least 1.2%higher than the existing model.[Limitations]The size of the generated text graph is related to the length of the text,leading to significant memory and computational overhead for processing long text.[Conclusions]The proposed model uses graph structure to model the relationship between external knowledge,context,and the target sentence at the word level.It effectively represents text semantics and enhances the accuracy of implicit sentiment analysis.

Implicit Sentiment AnalysisText Graph RepresentationGraph Attention Network

李嘉伟、张顺香、李书羽、段文杰、汪雨晴、邓金科

展开 >

安徽理工大学计算机科学与工程学院 淮南 232001

合肥综合性国家科学中心人工智能研究院 合肥 230031

淮南师范学院计算机学院 淮南 232038

隐式情感分析 文本图表征 图注意力网络

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(11)