首页|多模态协同对比学习的方面级情感分析模型

多模态协同对比学习的方面级情感分析模型

扫码查看
[目的]为充分提取各模态特征,实现多模态特征的对齐与融合以及下游任务的设计,提出一种多模态协同对比学习的方面级情感分析模型MCCL-ABSA.[方法]在文本侧利用方面词与句子中方面词编码的相似性,在图像侧利用图像经过随机裁剪后在不同顺序下编码的相似性,分别构造对比学习所需的正负样本;设计对比学习任务的损失函数,学习到更具区分度的特征表示;最后充分融合文本特征和图像特征,进行多模态方面级情感分析,同时联合对比学习任务,动态微调编码器.[结果]在数据集TWITTER-2015上,较基线模型的最高准确率和F1值分别提高0.82和2.56个百分点;在数据集TWITTER-2017上,较基线模型的最高准确率和F1值分别提高0.82和0.25个百分点.[局限]未验证模型在其他数据集上的泛化性.[结论]本文模型能够有效改善特征提取的质量,以简洁高效的下游结构实现特征融合,提升多模态情感分类的效果.
Aspect-Based Sentiment Analysis Model of Multimodal Collaborative Contrastive Learning
[Objective]To fully extract features from multiple modalities,align and integrate multimodal features,and design downstream tasks,we propose an aspect-based sentiment analysis model of multimodal collaborative contrastive learning(MCCL-ABSA).[Methods]Firstly,on the text side,we utilized the similarity between aspect words and their encoding within sentences.On the image side,the model used the similarity of images encoded in different sequences after random cropping to construct positive and negative samples required for contrastive learning.Secondly,we designed the loss function for contrastive learning tasks to learn more distinguishable feature representation.Finally,we fully integrated text and image features for multimodal aspect-based sentiment analysis while dynamically fine-tuning the encoder by combining contrastive learning tasks.[Results]On the TWITTER-2015 dataset,our model's accuracy and F1 scores improved by 0.82%and 2.56%,respectively,compared to the baseline model.On the TWITTER-2017 dataset,the highest accuracy and F1 scores were 0.82%and 0.25%higher than the baseline model.[Limitations]We need to examine the model's generalization on other datasets.[Conclusions]The MCCL-ABSA model effectively improves feature extraction quality,achieves feature integration with a simple and efficient downstream structure,and enhances the efficacy of multimodal sentiment classification.

MultimodalAspect-Based Sentiment AnalysisContrastive Learning

余本功、邢钰、张书文

展开 >

合肥工业大学管理学院 合肥 230009

合肥工业大学过程优化与智能决策教育部重点实验室 合肥 230009

多模态 方面级情感分析 对比学习

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(11)