首页|政民互动平台的公众满意度影响因素研究——基于领导信箱语料的分析

政民互动平台的公众满意度影响因素研究——基于领导信箱语料的分析

扫码查看
[目的]为探究政民互动平台公众满意度的影响因素,本文构建公众满意度影响因素分析模型.[方法]利用领导信箱语料信息提取微观变量,结合宏观经济变量采用梯度提升决策树方法建立公众满意度分析模型,最后基于SHAP分析剔除影响较小的变量以进一步优化模型.[结果]本文构建的公众满意度分析模型在准确率、召回率、查全率、F1值4项性能指标上均优于对比模型;GDP增长率、PCDI增长率、CPI增长率、来信主题、来信类型和回应模式是影响领导信箱的公众满意度的重要特征.[局限]未探索更多影响因素及更广泛的"政府-公民"互动视角场景.[结论]本文模型优化了变量筛选过程,并对各特征变量如何影响公众对政府回应效果满意的程度、方向和方式进行可视化,为数据驱动行政决策提供了分析工具.
A Study on the Factors Influencing Public Satisfaction with Government-Citizen Interaction Platforms:An Analysis Based on Leadership Mailbox Corpus
[Objective]This study investigates the factors influencing public satisfaction with government-citizen interaction platforms.We constructed an analysis model for factors affecting public satisfaction.[Methods]We extracted micro-level variables from the leadership mailbox corpus,which were combined with macroeconomic variables to establish a public satisfaction analysis model using the Gradient Boosting Decision Tree(GBDT)method.We also eliminated less influential variables with SHAP analysis to optimize the model.[Results]The proposed model outperformed comparison models across accuracy,recall,precision,and F1-score.Key features affecting public satisfaction with the leadership mailbox include GDP growth rate,PCDI growth rate,CPI growth rate,message topic,message type,and response mode.[Limitations]The study did not explore a broader range of influencing factors or more extensive government-citizen interaction scenarios.[Conclusions]The new model optimizes the variable selection process and visualizes how each feature influences the level,direction,and manner of public satisfaction with government responses.The model is a data-driven tool for administrative decision-making.

Public SatisfactionGovernment-Citizen InteractionMachine LearningLeader's Mailbox

杜佳磷、王西子、胡广伟

展开 >

南京大学信息管理学院 南京 210023

南京大学政务数据资源研究所 南京 210023

公众满意度 政民互动 机器学习 领导信箱

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(11)