首页|基于改进扩散模型的电商营销文本的自动生成研究

基于改进扩散模型的电商营销文本的自动生成研究

扫码查看
[目的]拓展扩散模型在文本生成领域的应用,解决生成文本信息单一、存在冗余的问题.[方法]采用TextRank算法提取原文本中的关键词信息,并将其融入序列扩散模型DiffuSeq,构建融合关键词信息的序列扩散模型K-DiffuSeq.[结果]相较于基准模型,K-DiffuSeq模型生成的文本在困惑度指标上至少提升4.140%,ROUGE指标上至少提升32.692%,文本多样性指标上至少提升1.566%.[局限]仅考虑商品有关的文本语料,忽略了图片、视频等更丰富的多模态商品信息.[结论]融合关键词信息能够有效提升营销文本生成模型的性能,本研究验证了扩散模型在文本生成领域的应用潜力.
Automatic Generation of E-Commerce Marketing Text Based on Improved Diffusion Model
[Objective]This paper aims to expand the application of diffusion models in the field of text generation,and to solve the problem of single and redundant information generated by existing models.[Methods]The TextRank algorithm is used to extract keyword information from the original text,and then the keyword information is integrated into a sequence diffusion model(DiffuSeq)to construct a sequence diffusion model(K-DiffuSeq)that integrates keywords.[Results]Compared to the benchmark models,the K-DiffuSeq model has shown an improvement of at least 4.140%in terms of PPL,32.692%in terms of ROUGE,and 1.566%in terms of diversity measure.[Limitations]Only text corpus related to the product was considered,while richer multimodal product information such as images and videos were ignored.[Conclusions]The integration of keywords can effectively improve the performance of marketing text generation models,and this study confirms the potential application of diffusion models in the field of text generation.

Text GenerationDiffusion ModelDiffuSeqKeywords Extraction

胡忠义、秦维、吴江

展开 >

武汉大学信息管理学院 武汉 430072

武汉大学电子商务研究与发展中心 武汉 430072

文本生成 扩散模型 序列扩散模型 关键词提取

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(11)