首页|基于MacBERT的碳中和实体关系联合抽取

基于MacBERT的碳中和实体关系联合抽取

扫码查看
[目的]为实现碳中和数据间的语义关联性挖掘、提升整体三元组抽取准确性,提出一种基于MacBERT的实体关系联合抽取HmBER模型.[方法]在HmBER模型中,通过相似度度量、实体边界辅助训练以及在关系抽取中引入实体类别特征,提升碳中和实体关系联合抽取的性能.[结果]与Multi-head、CasRel、SpERT和STER模型结果对比表明,HmBER模型的F1值在碳中和数据集上分别平均提升2.39%、13.84%.[局限]本方法处理的数据需要通过句子的意义推测实体关系联合抽取结果,没有做更深潜在语义的挖掘.[结论]HmBER模型有效地解决数据漏标与实体边界错误问题,为实体关系联合抽取提供了高准确抽取思路.
MacBERT-based Joint Extraction of Carbon Neutrality Entities and Relationships
[Objective]To achieve semantic association mining between carbon-neutral data and improve the overall accuracy of triplet extraction,this paper proposes a HmBER model for joint entity-relation extraction based on MacBERT.[Methods]In the HmBER model,we enhanced the performance in joint extraction of carbon-neutral entity relationships through similarity measurement,auxiliary training with entity boundaries,and introducing entity category features in relation extraction.[Results]Compared with Multi-head,CasRel,SpERT,and STER models,the F1 score of the HmBER model on the carbon-neutral dataset achieved an average improvement by 2.39%and 13.84%,respectively.[Limitations]The data processed by this method requires inference of sentence meaning to derive entity-relation joint extraction results and deeper latent semantic mining was not performed.[Conclusions]The HmBER model effectively addresses data annotation omission and entity boundary errors,providing a highly accurate approach for entity-relation joint extraction.

Entity and Relation ExtractionCarbon NeutralityBoundary ErrorMissing Label

朱西平、肖丽娟、高昂、郭露、杨欢

展开 >

西南石油大学电气信息学院 成都 610500

实体关系联合抽取 碳中和 边界错误 数据漏标

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(11)