首页|基于多注意力堆叠沙漏网络的三维下颌标志点自动确认方法

基于多注意力堆叠沙漏网络的三维下颌标志点自动确认方法

扫码查看
本文针对目前基于锥形束计算机断层扫描(Cone-Beam Computed Tomography,CBCT)体层数据直接定位三维下颌骨标志点时,未能充分利用三维空间信息以及对复杂关键点识别效果不佳等问题,提出一种新的三维下颌骨标志点自动确定方法,以提高标志点识别的准确性。本文提出了一种基于多注意力机制堆叠沙漏网络的方法。该方法首先从三维CBCT数据生成多视图的二维投影图像,然后在这些二维图像上进行标志点预测。通过整合来自不同视角的预测信息,最终推算出三维下颌骨关键点的位置。为验证所提方法的有效性,本研究使用了一个包含140例真实成人三维下颌骨样本的数据集,这些样本均经过了精确的手动标注。实验结果显示,所提方法在三维下颌骨标志点定位任务上的平均欧氏距离误差仅为1。16mm,这一数值显著低于医学临床实践中通常认为可接受的最大误差范围2mm。研究表明,所提出的新方法能够有效提高三维下颌骨标志点的自动识别精度,具有较高的实用价值。
Automatic identification method for 3D mandibular landmarks based on a multi-attention stacked hourglass network
This paper addresses the current limitations in directly localizing three-dimensional(3D)mandibular landmarks using cone-beam computed tomography(CBCT)volumetric data,where there is insufficient utilization of 3D spatial information and poor recognition performance for complex key points.A new method for the automatic determination of 3D mandibular landmarks is proposed to improve the accuracy of landmark identification.This method is based on a stacked hourglass network with multi-attention mechanisms.It first generates multi-view 2D projection images from 3D CBCT data,then performs landmark predictions on these 2D images.By integrating prediction information from different views,the final 3D coordinates of the mandibular keypoints are inferred.To validate the effectiveness of the proposed method,this study used a dataset consisting of 140 real adult 3D mandibular samples,all of which were precisely annotated manually.Experimental results show that the proposed method achieves an average Euclidean distance error of only 1.16 mm in the task of 3D mandibular landmark localization,which is significantly lower than the maximum acceptable error range of 2 mm commonly recognized in medical clinical practice.The study demonstrates that the new method can effectively enhance the automatic recognition accuracy of 3D mandibular landmarks and has high practical value

Stacked hourglass network3D mandibular landmark identificationAttention mechanismMulti-view mapping3D image processing

安子翀、高梓翔、马亚丽、傅湘玲、赵一姣

展开 >

北京邮电大学计算机学院(国家示范性软件学院),北京 100876

北京大学口腔医学院,口腔医院口腔医学数字化研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081

新疆师范高等专科学校(新疆教育学院),乌鲁木齐 830043

堆叠沙漏网络 三维下颌骨标志点识别 注意力机制 多视图映射 三维图像处理

2024

现代仪器与医疗
中国科学器材公司

现代仪器与医疗

影响因子:1.47
ISSN:2095-5200
年,卷(期):2024.30(6)