首页|智能预警算法在重症患者气管插管管路风险评级中的研究与实现

智能预警算法在重症患者气管插管管路风险评级中的研究与实现

扫码查看
目的 探讨重症患者气管插管管路风险智能预警算法在患者风险评级中的应用机制。方法 选取北京协和医院2022年6月8日—2022年9月29日急救室和重症监护病房中处于气管插管状态下的12例患者的监控视频数据。利用皮肤检测技术和SuperPoint技术获得患者面部关键点集合,计算关键点平均移动距离判断患者的头部移动状态;利用边缘检测技术和基于霍夫变换的平行线检测技术获得管路边界像素点集合,计算前后时刻管路边界像素点集合之间的豪斯多夫距离(Hausdorff Distance)判断管路的移动状态;通过患者手部边界框中心点的变化判断患者手部状态。汇总患者的所有监控视频的分析结果,获得患者的气管插管意外脱管的风险评级,最后与医生标注结果进行对比。结果 本文提出的移动检测算法的准确率均达到了90%以上,患者的风险评级结果与医生标注一致。结论 本文提出的重症患者气管插管管路风险智能预警算法能够有效评估患者的风险等级,提高医护人员的工作效率。
Risk prediction method for endotracheal tube in critically ill patients
Objective To explore the application mechanism of intelligent warning algorithm of tracheal intubation pipeline risk in patients with severe illness.Methods Surveillance video data of 12 patients with tracheal intubation in the emergency room and intensive care unit from June 8,2022 to September 29,2022 were selected from Peking Union Medical College Hospital.Skin detection technology and SuperPoint technology were used to obtain the set of key points on the patient's face,and the average moving distance of key points was calculated to determine the moving state of the patient's head.The edge detection technology and parallel line detection technology based on Hoff transform are used to obtain the pipeline boundary pixel set,and the Hausdorff Distance between the pipeline boundary pixel set is calculated to judge the pipeline moving state.The state of the patient's hand is judged by the change of the center point of the boundary frame of the patient's hand.The analysis results of all the surveillance videos of the patients were summarized to obtain the risk rating of the patient's tracheal intubation accident.Results Through the experiment,the accuracy of the mobile detection algorithm proposed in the paper reached more than 90%,and the patient risk rating was consistent with the doctor's annotation.Conclusion The intelligent early warning algorithm of tracheal intubation pipeline risk in severe patients can effectively evaluate the risk level of patients and improve the work efficiency of medical staff.

Tracheal intubationTarget detectionEdge detectionMobile detectionRisk rating

李文焘、李直懋、高键东、曾莹吟、雷友珣、刘业成、朱华栋

展开 >

北京邮电大学计算机学院(国家示范性软件学院),北京 100876

北京协和医院 急诊科,北京10000

清华大学电子工程系,北京 100084

清华大学 精准医学研究院临床大数据中心,北京 100084

厦门大学附属成功医院麻醉科,厦门 361003

北京协和医院 保健医疗部,北京 100007

展开 >

气管插管 目标检测 边缘检测 移动检测 风险评级

2024

现代仪器与医疗
中国科学器材公司

现代仪器与医疗

影响因子:1.47
ISSN:2095-5200
年,卷(期):2024.30(6)