首页|基于先验约束的临床靶区自动勾画方法对宫颈癌靶区勾画的应用研究

基于先验约束的临床靶区自动勾画方法对宫颈癌靶区勾画的应用研究

扫码查看
目的 深度学习技术目前已用于放射治疗目标的自动规划,例如直接勾画患者的临床靶区(Clinical Target Volume,CTV)。目前的深度学习方法聚焦于从CT图像中直接预测CTV区域,而不考虑先验知识约束,这限制了此类方法的准确性。靶区勾画与危机器官(Organ-at-risks,OAR)高度关联,现有方法在使用这一先验知识方面研究不足。本文旨在开发融合危机器官先验约束的临床靶区自动勾画方法。方法 根据危机器官和临床靶区的先验位置关系,利用边缘距离图,增强模型特征提取能力,并结合多任务学习框架,利用丰富的辅助任务来提升临床靶区自动勾画的模型性能。收集2017年6月—2019年5月期间的安徽省第一附属医院放疗科室的宫颈癌靶区勾画数据,并在此基础上验证了方法的性能。结果 实验结果表明,本文提出的融合危机器官先验约束的临床靶区自动勾画方法在宫颈癌数据集上取得了较好的性能,其评价指标优于现有的临床靶区自动勾画方法。结论 融合危机器官的先验知识可以增加临床靶区勾画的准确性,这为靶区自动勾画方法走入临床实践奠定基础。
An automatic delineation method of clinical target volume based on prior constraints of organs-at-risk
Objective Deep learning technology has been used for automatic planning of radiotherapy targets,such as directly delineating the patient's clinical target volume(CTV).Current deep learning methods focus on directly predicting the CTV from CT images without considering prior knowledge constraints,which limits the accuracy of such methods.Target delineation is highly related to organs-at-risk(OARs),and existing methods are insufficient in using this prior knowledge.This paper aims to develop an automatic CTV delineation method that integrates prior constraints on organs-at-risk.Methods According to the prior positional relationship between OAR and CTV,the edge distance map is used to enhance the model feature extraction capability.Combined with a multi-task learning framework,a rich set of auxiliary tasks are used to improve the model performance of automatic clinical target delineation.The cervical cancer CTV delineation data of the radiotherapy department of the First Affiliated Hospital of Anhui Province from June 2017 to May 2019 were collected,and the performance of the method was verified on this dataset.Results Experimental results have shown that the proposed automatic CTV delineation method integrating the prior constraints of OAR has achieved good performance on private dataset.The evaluation metrics are better than the existing automatic methods.Conclusion Integrating the prior knowledge of OAR can increase the accuracy of clinical target delineation,which lays the foundation for the automatic target delineation method to enter clinical practice.

Clinical target volumeOrgans-at-riskMultitask learningKnowledge fusion

石佳琳、杨宗耀、赵雪

展开 >

北京科技大学计算机与通信工程学院,北京 100083

临床靶区 危机器官 多任务学习 知识融合

2024

现代仪器与医疗
中国科学器材公司

现代仪器与医疗

影响因子:1.47
ISSN:2095-5200
年,卷(期):2024.30(6)