首页|基于深度学习的全脊柱腰椎滑脱自动分型的检测方法研究

基于深度学习的全脊柱腰椎滑脱自动分型的检测方法研究

扫码查看
目的 本文基于正侧位的脊柱X光片,实现全脊柱椎体检测,然后基于检测结果实现脊柱的腰椎滑脱的自动分型。方法 本文采用目标检测框架方法来检测椎体、弓根、骶骨S1上边缘及股骨头中心的检测。然后通过各项检测结果,来计算临床参数,从而完成对脊柱的分型预测。结果 所用数据集来自北京大学第三医院的脊柱X光片8331张,每位患者包括正位图和侧位图。针对于椎体检测,本方法在正位图中达到99。46%的图片召回率和99。73%的图片精准率,在侧位图中具有98。83%的图片召回率和99。38%的图片精准率。针对于S1上边缘、股骨头中心及弓根检测结果,达到了临床专家的要求。针对于腰椎滑脱的分型,平均准确率为93。5%。结论 本研究内容为腰椎滑脱问题提供了基于深度学习的自动检测方法,同时该方法也可以推广到颈椎滑脱、脊柱侧弯、椎骨异形等脊柱检测的其他问题。
Research on the detection method of full spine X-ray based on deep learning
Objective Accurately locating the boundaries of the entire spine is a prerequisite for the correct evaluation and treatment of most spinal diseases.At present,deep learning technology has been gradually introduced into the detection task of the spine and has achieved good results.However,there are few studies on automatic detection of the entire spine.Based on the anteroposterior and lateral spinal X-rays,this paper realizes the detection of the vertebral bodies of the entire spine,and then realizes the automatic classification of lumbar spondylolisthesis of the spine based on the detection results.Methods In this paper,a target detection framework,is used to detect the vertebral body,arch root,upper edge of the sacrum S1,and the center of the femoral head.Then,clinical parameters are calculated based on the test results to complete the classification prediction of the spine.Results The data set used is from the 8331 X-rays of the partner Peking University Third Hospital,and each patient includes an anteroposterior view and a lateral view.For vertebral body detection,this method achieves the recall rate of 99.46%and the precision rate of 99.73%in the anteroposterior view,and the recall rate of 98.83%and the precision rate of 99.38%in the lateral view.The results of the detection of the upper edge of S1,the center of the femoral head,and the arch root met the requirements of clinical experts.The average accuracy of the classification of lumbar spondylolisthesis was 93.5%.Conclusion This study provides a deep learning-based solution to the problem of lumbar spondylolisthesis.This method can also be extended to other spinal detection problems such as cervical spondylolisthesis,scoliosis,and vertebral anomalies.

Spine detectionSpondylolisthesisObject detectionNeural network

郭辰仪、姚锐杰、许南方

展开 >

清华大学电子工程系,北京 100084

脊柱检测 腰椎滑脱 目标检测 深度学习

2024

现代仪器与医疗
中国科学器材公司

现代仪器与医疗

影响因子:1.47
ISSN:2095-5200
年,卷(期):2024.30(6)