首页|基于机器学习的日间手术患者住院费用预测研究

基于机器学习的日间手术患者住院费用预测研究

扫码查看
目的 探讨XGBoost、BP神经网络和支持向量机对日间手术患者住院费用的预测价值,选择最优模型,为医院合理优化日间手术医疗资源配置提供科学依据。方法 利用某三甲医院2018年1月—2021年8月 日间手术中心患者病案首页共9 064份,通过Excel建立数据库,采用SPSS 21。0软件进行描述性分析。对于日间手术患者住院费用的分析预测,利用Python建立XGBoost、BP神经网络和支持向量机模型,比较评价指标选出最优模型,从而对医院日间手术患者的住院费用作出精准预测。结果 该院患者住院费用的中位数为2 872。11元。XGBoost模型预测住院费用的R方值为0。854,MAPE值为0。209;BP神经网络的R方值为0。837,MAPE值为0。240;支持向量机的R方值为0。730,MAPE值为0。225。综合两个评价指标,XGBoost预测的准确性比BP神经网络和支持向量机更高。结论 XGBoost比BP神经网络和支持向量机在日间手术患者住院费用预测研究中表现更具优势,具有较高的估算精度和可靠性。通过对住院费用的精准预测,可为相关医疗运营管理者提供决策参考,在保证医疗质量的情况下主动控费,从而达到引导医疗行为、提升医院资源使用效率的效果。
Prediction of hospitalization cost for day surgery patients based on machine learning
Objective To explore and compare the effect of the three forecasting models(extreme gradient boosting,back propagation neural network and support vector machine)on the hospitalization expense of day surgery,and to put forward suggestions on how to effectively control allocation of medical resources.Methods A total of 9 064 pieces of data from January 1,2018 to August 31,2021 were collected from the hospital information system.Excel was used to establish a database,and make a descriptive analysis by SPSS 21.0.Python was used to conduct models fitting for the hospitalization expense of day surgery.Select the best model for exactly forecasting the hospitalization expense of day surgery by comparing the evaluation indi-cators.Results The results showed that the median of hospitalization expense is 2 872.11.The coefficient of determination(R2)achieved 0.854 and the mean absolute percentage error(MAPE)was 0.209 when the extreme gradient boosting was used to predict the hospitalization expense.R2 achieved 0.837 and MAPE was 0.240 by using the back propagation neural network.R2achieved 0.730 and MAPE was 0.225 by using the support vector machine.The extreme gradient boosting performed better than the other methods by comparing the evaluation indicators.Conclusion Compared with the back propagation neural network and support vector machine,the extreme gradient boosting has more advantages in predicting the hospitalization expense of day surgery patients,which has higher estimation precision and reliability.The accurate prediction of hospitalization expense can pro-vide decision-making reference for relevant medical operation managers,and control the expense actively under the condition of ensuring medical quality,guiding the medical behavior and improving the efficiency of the use of hospital resources.

Day surgeryHospitalization expenseExtreme gradient boostingBack propagation neural networkSup-port vector machine

游晓平

展开 >

南方医科大学珠江医院 广东广州 510280

日间手术 住院费用 XGBoost BP神经网络 支持向量机

2024

现代医院
广东省医院协会

现代医院

影响因子:1.332
ISSN:1671-332X
年,卷(期):2024.24(6)