首页|基于SSA-Hurst-ARIMA组合模型的船舶柴油发电机组故障特征短期预测

基于SSA-Hurst-ARIMA组合模型的船舶柴油发电机组故障特征短期预测

扫码查看
为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型.以某试验中船舶柴油发电机组运行数据为基础,选取增压器滑油压强数据,对比分析单一ARIMA模型、SSA主成分-ARIMA组合模型和SSA-Hurst-ARIMA组合模型的预测效果.结果表明,SSA-Hurst-ARIMA组合模型的预测效果优于单一ARIMA模型和SSA主成分-ARIMA组合模型,更适合应用于船舶柴油发电机组故障特征的短期预测.
Short-term Prediction of Fault Characteristics of Marine Diesel Generator Set Based on SSA-Hurst-ARIMA Combinatorial Model
In order to improve the short-term prediction accuracy of fault characteristics of marine diesel generator sets,a combined prediction model based on Singular Spectrum Analysis(SSA),Hurst index and Auto-Regressive Integrated Moving Average(ARIMA)is established.Based on the operating data of a marine diesel generator set in an experiment,the data of supercharger lubricating oil pressure are selected to compare and analyze the forecasting effects of a single ARIMA model,SSA principal component-ARIMA combination model and SSA-Hurst-ARIMA combination model.The results show that the prediction effect of SSA-Hurst-ARIMA combined model is better than that of the single ARIMA model and SSA principal component-ARIMA combined model,which is more suitable for the short-term prediction of fault characteristics of marine diesel generator sets.

marine diesel generator setfault characteristicsshort-term forecastSingular Spectrum Analysis(SSA)Hurst indexAuto-Regressive Integrated Moving Average(ARIMA)model

梁清政、王浩、程垠钟、杨天诣、姚钦博

展开 >

中国舰船研究院,北京 100192

船舶柴油发电机组 故障特征 短期预测 奇异谱分析(SSA) Hurst指数 自回归移动平均(ARIMA)模型

2024

现代制造技术与装备
山东省机械设计研究院 山东机械工程学会

现代制造技术与装备

影响因子:0.197
ISSN:1673-5587
年,卷(期):2024.60(2)
  • 6