首页|基于改进神经网络的冶金液压系统故障诊断方法

基于改进神经网络的冶金液压系统故障诊断方法

扫码查看
提出一种基于改进神经网络的冶金液压系统故障诊断方法.该方法结合小波包变换进行特征提取,利用遗传算法优化网络参数,并引入注意力机制提高诊断精度.在 1 000 t液压机多故障模式试验中,该方法的诊断准确率高达 98.75%,平均诊断时间为0.85 s,均优于传统的反向传播(Back Propagation,BP)神经网络和支持向量机(Support Vector Machine,SVM)方法.
Fault Diagnosis Method of Metallurgical Hydraulic System Based on Improved Neural Network
A fault diagnosis method of metallurgical hydraulic system based on improved neural network is presented.The method combines wavelet packet transform to extract features,uses genetic algorithm to optimize network parameters,and introduces attention mechanism to improve diagnostic accuracy.In the multi-fault mode test of 1 000 t hydraulic press,the diagnostic accuracy of the proposed method is up to 98.75%,and the average diagnostic time is 0.85 s,which is better than the traditional Back Propagation(BP)neural network and Support Vector Machine(SVM)method.

metallurgical hydraulic systemfault diagnosisimproved neural network

胡守英

展开 >

天津荣程联合钢铁集团有限公司,天津 300352

冶金液压系统 故障诊断 改进神经网络

2024

现代制造技术与装备
山东省机械设计研究院 山东机械工程学会

现代制造技术与装备

影响因子:0.197
ISSN:1673-5587
年,卷(期):2024.60(12)