首页|数据驱动的机械系统网络构建与异常监测方法研究

数据驱动的机械系统网络构建与异常监测方法研究

扫码查看
针对机械系统日益复杂所带来的故障诊断与异常监测难题,结合系统的整体性特点,利用复杂网络技术和系统运行过程数据,实现机械系统的网络模型构建与异常监测.首先,运用改进的余弦相似度算法计算节点之间的相关性等级,并据此完成网络模型的构建;其次,在时域范围内计算图序列之间的距离,分析系统在某一时间的相对异常情况,进而判断系统是否产生异常行为;最后,借助自回归滑动平均(Auto Regressive Moving Average,ARMA)模型理论进行系统状态的预测.应用滚动轴承的运行数据对所提方法进行验证,结果表明模型能够准确监测出系统发生异常的时间节点,且能很好地预测系统后续的运行状态.
Research on Data-Driven Mechanical System Network Construction and Anomaly Monitoring Methods
Aiming at the difficulty of fault diagnosis and anomaly monitoring caused by the increasing complexity of mechanical system,combined with the integral characteristics of the system,complex network technology and system operation process data are used to realize the network model construction and anomaly monitoring of mechanical system.Firstly,the improved cosine similarity algorithm is used to calculate the correlation level between nodes,and the network model is constructed accordingly.Secondly,the distance between the graph sequences is calculated in the time domain to analyze the relative abnormal situation of the system at a certain time,and then judge whether the system produces abnormal behavior.Finally,with the help of Auto Regressive Moving Average(ARMA)model,the system state is predicted.The proposed method is verified by the running data of the rolling bearing.The results show that the model can accurately monitor the time node of the abnormal system and predict the subsequent running state of the system.

complex networkanomaly monitoringstate predictiongraph distanceAuto Regressive Moving Average(ARMA)model

李伊、张帆、刘天赐、周凡越、焦国龙

展开 >

北华航天工业学院,廊坊 065000

复杂网络 异常监测 状态预测 图距离 自回归滑动平均(ARMA)模型

2024

现代制造技术与装备
山东省机械设计研究院 山东机械工程学会

现代制造技术与装备

影响因子:0.197
ISSN:1673-5587
年,卷(期):2024.60(12)