首页|基于SBM-GML指数的农业绿色全要素生产率及影响因素分析

基于SBM-GML指数的农业绿色全要素生产率及影响因素分析

扫码查看
研究使用全局SBM-GML指数对中国31个省份2011-2019年的农业绿色效率值和绿色全要素生产率进行测算和分解,并运用Tobit模型对影响因素进行了分析.研究结果表明,我国农业的绿色全要素生产效率增长较为缓慢,其中技术效率是推动增长的关键因素,技术进步一定程度上起到了制约作用.从全国31个省份整体来看,2019年有14个省份实现农业绿色有效,河南、江西和广东的农业绿色全要素生产率增长率位列全国前三.经济发展水平、产业结构和财政支出对农业绿色全要素生产率提高具有正面影响,人力资本结构、环境规制则具有负面影响;自然灾害对全国、中部和西部的农业绿色全要素生产率提高产生负效应,对东部则产生正效应.
Analysis of Agricultural Green Total Factor Productivity and Its Influencing Factors Based on SBM-GML Index
In this study,the global SBM-GML index was used to measure and decompose the agricultural green efficiency and green total factor productivity of 31 provinces in China from 2011 to 2019,and the influencing factors were analyzed with the Tobit model.The results showed that the growth of green total factor production efficiency in China's agriculture was relatively slow,in which technical efficiency was the key factor promoting the growth,while technological progress played restricting role to certain extent.From the perspective of the 31 provinces in China,14 provinces achieved agricultural green efficiency in 2019.The growth rate of agricultural green total factor productivity of Henan,Jiangxi and Guangdong were the top three in the country.Economic development level,industrial structure and fiscal expenditure had positive effects on the improvement of agricultural green total factor productivity,while human capital structure and environmental regulation had negative effects.Natural disasters had negative effects on agricultural green total factor productivity in the whole country,central and western China,and positive effects in eastern China.

SBM-GML indexagricultural green total factor productivitytechnical efficiencyinfluencing factor

袁世一

展开 >

中国农业科学院农业信息研究所,北京10008

SBM-GML指数 农业绿色全要素生产率 技术效率 影响因素

国家自然科学基金项目中国农业科学院农业信息研究所基本科研业务费

62103418JBYW-AII-2023-07

2024

现代农业
内蒙古自治区农牧业科学院

现代农业

影响因子:0.14
ISSN:1008-0708
年,卷(期):2024.49(1)
  • 1
  • 14