首页|基于L1/2范数的非局部PCA泊松噪声图像恢复改进算法

基于L1/2范数的非局部PCA泊松噪声图像恢复改进算法

扫码查看
为增强NLSPCA(非局部稀疏主成分分析)算法对去除图像泊松噪声性能,提高图像块聚类精确度,增大字典下的表示系数稀疏性,改善恢复图像易模糊等问题,提出基于L1/2范数的非局部PCA泊松噪声图像恢复改进算法(L1/2-NLSPCA).新算法首先对图像分割成重叠块;其次采用设计的自适应BregmanK-means算法对分割的图像块聚类;最后使用PCA构建基于L1/2范数的非局部字典下的稀疏表示系数,对聚类后的图像块分组进行去噪重构.实验结果表明,L1/2-NLSPCA算法与基准算法相比峰值信噪比(PSNR)提高了 0.52~2.57 dB,在视觉上纹理细节更清晰.
Improved Algorithm for Non-local PC A Poisson Noise Image Restoration Based on L1/2 Norms
In order to mitigate the issue of image blurring during restoration by using the original NLSPCA(Non-Local Sparse Principal Component Analysis),we propose a novel non-local PCA Pois-son noise image restoration algorithm based on L1/2 norms(L1/2-NLSPCA)to improve enhance the performance in removing Poisson noise from images.Firstly,the proposed method segments the image into overlapping blocks;secondly,the designed adaptive Bregman K-means algorithm clusters the seg-mented image blocks to improve the accuracy of image block clustering;finally,we utilize PCA to construct a non-local dictionary and obtain sparse representation coefficients based on L1/2 norms,which are subsequently employed in the denoising and reconstruction of the clustered image blocks.L1/2 norms can increase the sparsity of the representation coefficients under the dictionary more effi-ciently.Experimental results show that the L1/2-NLSPCA algorithm improves the peak signal-to-noise ratio(PSNR)by 0.52 to 2.57 dB compared to with the benchmark algorithm,and the texture details are clearer visually visually clearer.

Poisson distributionimage denoisingprincipal component analysisL1/2 norms

李欢、张文娟、黄姝娟、肖锋

展开 >

西安工业大学基础学院,陕西西安 710016

西安工业大学计算机科学与工程学院,陕西西安 710016

泊松分布 图像去噪 主成分分析 L1/2范数

国家自然科学基金面上项目陕西省重点研发计划陕西省科技厅自然科学基础研究计划陕西省科技厅工业科技攻关计划

621713612022GY-1192021JM-4402020GY-066

2024

咸阳师范学院学报
咸阳师范学院

咸阳师范学院学报

CHSSCD
影响因子:0.137
ISSN:1672-2914
年,卷(期):2024.39(2)
  • 15