首页|基于Farneback-GRU的稀土熔盐反应状态识别研究

基于Farneback-GRU的稀土熔盐反应状态识别研究

扫码查看
提出一种基于Farneback-GRU的稀土熔盐反应状态识别方法.通过Farneback稠密光流法、尺度变换和均值滤波量化稀土熔盐反应剧烈程度,并由门控循环单元神经网络(Gated recurrent unit,GRU)建立稀土熔盐运动场特征与稀土熔盐反应状态之间的非线性映射模型.模型精度达到95.23%,能很好满足生产企业检测标准,此外,模型的性能指标表明该模型具有很好的鲁棒性,为稀土电解槽在线控制提供了重要的闭环反馈参数,为提高生产安全系数和实现无人工厂提供了重要参考.
Research on Reaction State Identification of Rare Earth Molten Salt Based on Farneback-GRU
A method for identifying the reaction state of rare earth molten salt based on Farneback-GRU is proposed.The reaction intensity of rare earth molten salt is quantified by the Farneback dense optical flow method,scaling transformation,and mean filtering,and a nonlinear mapping model between rare earth molten salt motion field characteristics and the rare earth molten salt reaction state is established by the Gated Recurrent Unit(GRU)neural network.The accuracy of the model reaches 95.23%,which can well meet the testing standards of production enterprises.In addition,the performance indicators of the model show that the model has good robustness and provides important closed-loop feedback parameters for the online control of rare earth electrolyzers.

rare earth molten saltfarneback dense optical flowgated recurrent unitclosed-loop controlrobustness

陈鑫宇、伍昕宇、刘飞飞、刘子贤、涂远泯、曹乐乐

展开 >

江西理工大学机电工程学院,江西赣州 341000

江西理工大学电气工程与自动化学院,江西赣州 341000

江西离子型稀土工程技术研究有限公司,江西赣州 341000

稀土熔盐 Farneback稠密光流法 门控循环单元 闭环控制 鲁棒性

江西省重点创新研发平台计划

20181BCD40009

2024

稀土
中国稀土学会 包头稀土研究院

稀土

CSTPCD北大核心
影响因子:1.172
ISSN:1004-0277
年,卷(期):2024.45(1)
  • 28