首页|字典积图的任意可分性

字典积图的任意可分性

扫码查看
给定n个顶点的图G,对于满足k∑i=1ni=n的任意一个正整数序列(n1,n2,…,nk),如果都存在顶点集V(G)的划分(V1,V2,…,Vk),满足Vi导出的子图G[Vi]是连通的,并且|Vi|=ni,其中1≤i≤k,则称图G是任意可分图(简称为AP).两个图G和H的字典积图记为G(o)H,其顶点集为V(G)×V(H),(g,h)(g',h')是G(o)H的一条边当且仅当gg'∈E(G)或者g=g'且hh'∈E(H).讨论了可迹图和任意可分图的字典积图的任意可分性,证明了对于最大度至多为n+1的树T,如果T有一条路P满足全部度数为△(T)的顶点属于顶点集V(P),则字典积图T(o)Pn是任意可分图;如果G是一个可迹图且H是任意可分图,则图G(o)H是任意可分图;如果G=S(2,a,b)是一个满足2≤a≤b的任意可分星型树,则图G(o)G是任意可分图;如果G是哈密顿图且H是一个图,则G(o)H是任意可分图.
Partitioning the Lexicographic Product of Graphs
An n-vertex graph G is said to be arbitrarily partitionable(AP,for short),if for any sequence(n1,n2,…,nk)of positive integers such that kΣi=1 ni=n,there exists a partition(V1,V2,…,Vk)of vertex set V(G)such that the subgraph G[Vi]induced by Vi is connected and |Vi|=ni for each 1 ≤ i ≤ k.The lexicographic product of two graphs G and H,denoted by G(o)H,has vertex set V(G)x V(H)in which(g,h)(g',h')is an edge whenever gg'is an edge in G or g=g'and hh'is an edge in H.In this paper,we mainly discuss the arbitrary partitionability of the lexicographic product of traceable graph and AP graph.We prove that for a tree T of maximum degree at most n+1,if T has a path P such that all the vertices of degree △(T)are in V(P),then the lexicographic product graph T(o)Pn is AP;if G is a traceable graph and H is an AP graph,then G(o)H is AP;if G=S(2,a,b)is an AP star-like tree with 2 ≤ a ≤ b,then G(o)G is AP;if G is Hamiltonian,H is a graph,then G(o)H is AP.

arbitrary partition ability of graphslexicographic product of graphsstar-like treestraceable graphs

西日尼阿依·努尔麦麦提、刘凤霞、蔡华

展开 >

喀什大学数学与统计学院,新疆喀什 844000

新疆大学数学与系统科学学院,新疆乌鲁木齐 830017

昌吉学院数学与数据科学学院,新疆昌吉 831100

图的任意可分性 字典积图 星型树 可迹图

国家自然科学基金新疆维吾尔自治区自然科学基金

119610672022D01C02

2024

新疆大学学报(自然科学版)(中英文)
新疆大学

新疆大学学报(自然科学版)(中英文)

CSTPCD
影响因子:0.13
ISSN:2096-7675
年,卷(期):2024.41(2)
  • 7