首页|一类具有媒体报道和环境传播的SEVIQBR传染病模型的动力学分析

一类具有媒体报道和环境传播的SEVIQBR传染病模型的动力学分析

扫码查看
考虑媒体报道以及环境传播对疾病传播的影响,建立了一类受媒体报道和环境传播影响的SEVIQBR传染病模型.首先,通过下一代矩阵的方法得到了模型的基本再生数R0,基于基本再生数讨论模型无病平衡点以及地方病平衡点的存在性.接着,借助Hurwitz判据研究了无病平衡点的局部稳定性,并构造适当的Lyapunov函数证明无病平衡点的全局渐近稳定性.结果表明:当基本再生数R0<1时,模型的无病平衡点是全局渐近稳定的,当R0满足一定条件时,模型的地方病平衡点是存在的.最后,通过数值模拟验证了理论结果.
Dynamic Analysis of a SEVIQBR Infectious Disease Model with Media Coverage and Environmental Transmission
Considering the influence of media reports and environmental transmission on disease transmission,a SEVIQBR infectious disease model is established.Firstly,the basic reproduction number R0 of the model is obtained by the next generation matrix method.Based on the basic reproduction number,the existence of disease-free equilibrium and endemic equilibrium of the model is discussed.Then,the local stability of disease-free equilibrium is studied by means of Hurwitz criterion,and the global asymptotic stability of disease-free equilibrium is studied by constructing an appropriate Lyapunov function.The results show that when the basic reproduction number R0<1,the disease-free equilibrium of the model is globally asymptotically stable.When R0 satisfies certain conditions,the endemic equilibrium of the model exists.Finally,we give some numerical simulations to explain the theoretical results.

basic reproduction numberstabilityLyapunov functionmedia coverageSEVIQBR model

罗颜涛、陆腾腾、杨谨鸿

展开 >

新疆大学数学与系统科学学院,新疆乌鲁木齐 830017

基本再生数 稳定性 Lyapunov函数 媒体报道 SEVIQBR模型

新疆维吾尔自治区自然科学基金国家自然科学基金新疆维吾尔自治区大学生创新项目

2022D01C6412201540S202210755090

2024

新疆大学学报(自然科学版)(中英文)
新疆大学

新疆大学学报(自然科学版)(中英文)

CSTPCD
影响因子:0.13
ISSN:2096-7675
年,卷(期):2024.41(2)
  • 12