首页|基于字典分级和属性加权的密文排序检索方案

基于字典分级和属性加权的密文排序检索方案

扫码查看
可搜索加密支持用户在不解密原始数据的前提下对加密数据执行检索操作.现有的多关键词排序可搜索加密方案,其索引和陷门构建的时间成本通常依赖于由全局关键词字典张成的向量空间.为了减少用户端的计算开销和通信成本,进一步提升数据使用者对检索结果的满意度,提出了一种支持细粒度访问控制的多关键词密文排序检索方案.该方案首先设计基于互信息的字典剥离机制差异化全局字典中的关键词,得到两个信息量不同的附属子字典,进一步在低维子字典空间上生成索引和陷门;其次,引入文档访问策略中属性的权重,将其作为排序标准之一,使数据使用者获得更为相关的结果;最后,检索时利用筛选向量对数据进行初次过滤并借助属性匹配完成二次剔除,从而避免检索过程中不必要的计算.
Ciphertext Ranked Search Scheme Based on Dictionary Classification and Attribute Weighting
Searchable encryption supports users to perform search operations over encrypted data without decrypting the original data.The time cost of index and trapdoor construction of existing multi-keyword ranked searchable encryption schemes usually depends on the vector space formed by the global keyword dictionary.To reduce computation overhead and communication cost on the users side and further enhance users'satisfaction with search results,this paper proposes a multi-keyword ranked search scheme that supports fine-grained access control.The scheme first designs a dictionary-stripping mechanism based on mutual information,through which the keywords in the global dictionary are differentiated into two subsidiary sub-dictionaries with different information entropy,which further generates indexes and trapdoors in the low-dimensional sub-dictionary space.Secondly,the weight of attributes in the document access policy is considered as one of the ranking criteria so that data users achieve more relevant results.Finally,the filtering vector filters the data for the first round,and the attribute matching is used to complete the second round of elimination to avoid unnecessary computation during the search.

searchable encryptionmulti-keyword ranked searchsecure K-nearest neighbor algorithmdictionary classificationattribute weighting

王娟、努尔买买提·黑力力

展开 >

新疆大学数学与系统科学学院,新疆乌鲁木齐 830017

可搜索加密 多关键词排序检索 安全K-近邻算法 字典分级 属性加权

国家自然科学基金

61862059

2024

新疆大学学报(自然科学版)(中英文)
新疆大学

新疆大学学报(自然科学版)(中英文)

CSTPCD
影响因子:0.13
ISSN:2096-7675
年,卷(期):2024.41(2)
  • 17