首页|基于多测井参数的陆相页岩储层总有机碳含量预测:以和尚塬地区延长组长7段为例

基于多测井参数的陆相页岩储层总有机碳含量预测:以和尚塬地区延长组长7段为例

扫码查看
总有机碳含量(Total Organic Carbon,TOC)是评价页岩油气潜力的关键参数,利用测井数据预测TOC,能刻画整段储层的TOC变化,对于明确地质-工程"甜点"意义重大.和尚塬地区延长组长7段陆相页岩由于沉积环境频繁交替变化,页岩层系内大量发育粉砂质泥岩条带.针对岩性非均质性强的特点,将页岩储层细分为页岩和粉砂质泥岩两种岩性,分别建立TOC预测模型.在比较现有方法的基础上,结合研究区的测井资料实际,选用△lgR改进法和机器逐步回归学习法分岩性建立预测模型.经过实测数据的精度检验,机器逐步回归学习法的预测精度更高.通过对单井预测值与实测值的误差分析,印证了细分岩性机器逐步回归学习预测模型的可靠性,证明该方法对预测以常规测井为主的陆相泥页岩TOC是有效的.在此基础上,应用该方法对研究区101 口井长7段泥页岩进行预测,获得了TOC的空间展布.
Prediction of Total Organic Carbon Content in Continental Shale Reservoirs Based on Multiple Logging Parameters:A Case Study from Member 7 of Yanchang Formation in Heshangyuan Area
TOC is a key parameter to evaluate shale oil and gas potential,TOC prediction by using logging data can depict the change of TOC in the whole section of the reservoir,which is of great significance for clarifying the geological-engineering sweet spot.Due to the frequent alternation of depositional environments,a large number of siltstone mudstone bands are developed in the shale of member 7 in Yanchang formation in Heshangyuan area.In view of the characteristics of strong lithologic heterogeneity,TOC content of the shale reservoir was predicted by distinguishing the two lithologies of shale and siltstone.Based on the comparison of the existing methods and the actual well logging data in the study area,the improved method of △lgR and the machine stepwise regression learning method were selected to establish the prediction model by lithology.After testing the accuracy of the measured data,the results show that the machine stepwise regression learning method has higher prediction accuracy.The error analysis between the predicted and measured values in a single well also confirms the reliability of the machine stepwise regression learning method by subdivision lithology,proving that the method is effective in predicting TOC content of mud shale,which is mainly based on conventional logging.On this basis,TOC content and its spatial distribution is obtained by the logging interpretation of 101 wells'shale of member 7 in Yanchang formation.

total organic carbon content predictionlogging datacontinental shalemachine learning

秦晓艳、王震亮、程昊、赵晓东

展开 >

陕西工业职业技术学院土木工程学院,陕西咸阳 712000

西北大学地质学系,陕西西安 710069

中国石油集团测井有限公司地质研究院,陕西西安 710077

中国石油长庆油田分公司第十二采油厂,甘肃合水 745400

展开 >

总有机碳含量预测 测井资料 陆相页岩 机器学习

国家自然科学基金面上项目陕西工业职业技术学院"青年科技创新团队研究项目"&&

41172122KCTD2022-012024YKYB-023

2024

新疆大学学报(自然科学版)(中英文)
新疆大学

新疆大学学报(自然科学版)(中英文)

CSTPCD
影响因子:0.13
ISSN:2096-7675
年,卷(期):2024.41(5)