首页|燃煤发电厂时序数据预测方法的理论研究

燃煤发电厂时序数据预测方法的理论研究

扫码查看
随着智能电网的快速发展,燃煤发电厂行业每天可以产生数以亿计的电力时序数据.电力时序数据的分析与预测对电力系统的安全稳定运行以及资源合理分配等方面具有重要的现实意义.近年来,越来越多的学者开始研究电力时序数据预测.现有的大部分方法通过研究多条电力时序数据之间的静态关系或历史序列特性来预测未来趋势.本文分析了电力时序数据预测方法的研究现状和相关技术,这些方法已经在电力负荷预测、可再生能源预测、故障预测等方面取得了很好的应用效果.
Theoretical Study on Time Series Data Prediction Method for Coal Fired Power Plants
With the rapid development of smart grids,the coal-fired power plant industry can generate billions of power time se-ries data every day.The analysis and prediction of power time series data have important practical significance for the safe and stable operation of the power system and the rational allocation of resources.In recent years,more and more scholars have be-gun to study the prediction of power time series data.Most existing methods predict future trends by studying the static relation-ships or historical sequence characteristics between multiple power time series data.This article analyzes the research status and related technologies of power time series data prediction methods,which have achieved good application effects in power load forecasting,renewable energy forecasting,fault forecasting,and other fields.

coal-fired power plantstime seriespower time series predictionneural network

龙媛媛、程路熙、李梦尧、曾立君

展开 >

重庆工业大数据创新中心有限公司,重庆 404100

燃煤发电厂 时间序列 电力时序预测 神经网络

国家重点研发计划资助

2022YFE0125400

2024

新疆钢铁
新疆维吾尔自治区金属学会

新疆钢铁

影响因子:0.081
ISSN:1672-4224
年,卷(期):2024.(3)