首页|基于改进关联规则的煤矿设备安全状态预测模型

基于改进关联规则的煤矿设备安全状态预测模型

扫码查看
煤矿安全生产关乎着社会公共安全的稳定,为了提高煤矿企业安全运行管理水平,研究基于关联规则与粒子群算法充分挖掘运行状态数据中的表征信息,设计了安全状态预测模型.实验结果表明,研究设计的改进Apriori算法在执行效率与规则挖掘数量上表现更优,执行12万条数据挖掘仅同时23 s.预测误差较其他预测模型具有相对优势,误差值小于0.3.研究的设计对于确保煤矿企业的生产安全、提高生产效率具有重要意义.
Coal Mine Equipment Safety Status Prediction Model Based on Improved Association Rules
The safe production of coal mines is related to the stability of social public safety.In order to improve the safety oper-ation and management level of coal mining enterprises,a safety state prediction model was designed based on association rules and particle swarm optimization algorithm to fully explore the representation information in the operation status data.The ex-perimental results show that the improved Apriori algorithm designed in the study performs better in terms of execution efficien-cy and rule mining quantity,with only 23 seconds of simultaneous execution of 120000 data mining.The prediction error has a relative advantage over other prediction models,with an error value of less than 0.3.The design of the research is of great sig-nificance for ensuring production safety and improving production efficiency in coal mining enterprises.

association rulescoal minessafety statusforecast

张磊、贾新兵

展开 >

山东东山王楼煤矿有限公司,山东 济宁 272000

关联规则 煤矿 安全状态 预测

2024

新疆钢铁
新疆维吾尔自治区金属学会

新疆钢铁

影响因子:0.081
ISSN:1672-4224
年,卷(期):2024.(3)