首页|基于双目匹配的间苗机器人视觉定位算法研究

基于双目匹配的间苗机器人视觉定位算法研究

扫码查看
当智能农业装备用于农业生产时,作物的精准定位可以为间苗工作提供决策.针对幼苗茎部双目定位的精度问题,本研究提出一种改进的SURF算法进行双目匹配,完成幼苗茎部的三维坐标测量.首先根据作物与土壤背景的颜色差异,使用超绿算法分割出作物轮廓,再利用改进的SURF算法完成双目视觉的左右图像匹配,从而根据坐标转换关系确定幼苗茎部的三维坐标.结果表明:X方向平均绝对误差为3.5232 mm;Y方向平均绝对误差为4.194 mm,Z方向的平均绝对误差为3.045 mm;识别成功率符合预期要求,有效提高了幼苗茎部的测量精度.
Visual localization algorithm based on binocular matching in seedling robots
When intelligent agricultural equipment is used in agricultural production,the precise positioning of crops can provide decision-making for seedling work.In order to solve the problem of the accuracy of binocular positioning of seedling stems,an improved SURF algorithm was proposed to complete the measurement of the three-dimensional coordinates of seedling stems.Firstly,according to the color difference between the crop and the soil background,the super-green algorithm was used to segment the crop outline,and the improved SURF algorithm was used to complete the left and right image matching of binocular vision,so that the three-dimensional coordinates of the seedling stem could be determined according to the coordinate conversion relationship.The results showed that the average absolute error in the X direction was 3.5232 mm,that the average absolute error in the Y direction was 4.194 mm,and that the average absolute error in the Z direction was 3.045 mm.The success rate of identification met the expected requirements,which effectively improved the measurement accuracy of seedling stems.

Precision agricultureBinocular visionImage

朱昱荣、胡波

展开 >

广西科技大学自动化学院,广西 柳州 545006

精准农业 双目视觉 图像

2024

新疆农机化
新疆农科院农业机械化研究所

新疆农机化

影响因子:0.185
ISSN:1007-7782
年,卷(期):2024.(6)