首页|心肌缺血与深度学习框架CCTA特征的相关性研究

心肌缺血与深度学习框架CCTA特征的相关性研究

扫码查看
目的 使用基于深度神经网络的冠状动脉CT血管造影(Coronary CT angiography,CCTA)成像技术分析冠脉狭窄、斑块及CT血管成像的血流储备分数(CT fractional flow reserve,CT-FFR),探讨其评估心肌缺血的价值.方法 选择本院2021年10月至2023年3月同时行心脏造影(X-ray angiography,XA)及CCTA检查的190例疑似冠心病患者,以XA为金标准分为心肌缺血组和非心肌缺血组,各95例血管.应用人工智能(Artificial intelligence,AI)辅助软件分析指标,比较两组间差异、评估其诊断效能及相关性.结果 两组间冠脉狭窄指标、斑块长度(PL)、斑块体积(PV)、最小管腔面积(MLA)、最小管腔直径狭窄程度(MLD%)、管腔、斑块、脂质及纤维脂质面积、正性重构、低衰减斑块、餐巾环征及易损斑块含量差异均具有统计学意义.冠脉狭窄、CT-FFR及易损斑块可提高心肌缺血的诊断效能.CCTA管腔狭窄程度定性方面,医师借助AI软件诊断心肌缺血与XA诊断心肌缺血的一致性佳(Kappa=0.853,P<0.001).XA管腔狭窄程度与CT-FFR呈显著负相关(rs=-0.52),与MLD%max、LS及PL呈正相关(rs=0.46,rs=0.42,rs=0.21),差异均具有统计学意义.结论 基于深度学习框架下的CCTA诊断冠心病心肌缺血的价值良好,CCTA管腔狭窄程度与XA诊断心肌缺血的一致性好,心肌缺血与CCTA管腔狭窄、斑块及CT-FFR的相关性显著.
Study on correlation between myocardial ischemia and coronary CT angiography(CCTA)features of deep learning framework
Objective To use coronary CT angiography(CCTA)imaging technology based on deep neural network to analyze coronary stenosis,plaque and CT fractional flow reserve(CT-FFR),and to explore its value in evaluating myocardial ischemia.Methods A total of 190 patients with suspected coronary heart disease who underwent cardiac X-ray angiography(XA)and CCTA examinations in the hospital from Octo-ber 2021 to March 2023 were selected,and XA was used as the gold standard to divide them into myocardi-al ischemia group and non-myocardial ischemia group,there were 95 cases in each group.The artificial in-telligence(AI)was used to compare the difference between the 2 groups,and to evaluate its diagnostic ef-ficiency and correlation.Results There were statistically significant differences in coronary artery stenosis index,plaque length(PL),plaque volume(PV),minimum lumen area(MLA),minimum degree of ste-nosis(MLD%),lumen,plaque,lipid and fibrous lipid area,positive remodeling,low-attenuation plaque,napkin ring sign and VP content between the 2 groups.Coronary stenosis,CT-FFR and vulnerable plaque can improve the diagnostic efficiency of myocardial ischemia.In terms of the qualitative degree of CCTA lumen stenosis,the diagnosis of myocardial ischemia by physicians and AI software was consistent with that by XA(Kappa=0.853,P<0.001).The degree of lumen stenosis of XA was significantly negatively correlated with CT-FFR(rs=-0.52),and positively correlated with MLD%max,LS and PL(rs=0.46,rs=0.42,rs=0.21),and the differences were statistically significant.Conclusion CCTA based on deep learn-ing framework has good value in the diagnosis of coronary myocardial ischemia,and the degree of lumen stenosis of CCTA is consistent with that of XA in the diagnosis of coronary myocardial ischemia.There is a significant cor-relation between myocardial ischemia and CCTA lumen stenosis,plaque and CT-FFR.

coronary heart diseasemyocardial ischemiadeep learningvulnerable plaqueCT fractional flow reserve(CT-FFR)coronary CT angiography(CCTA)

刘璇、巴图尔·吐尔地、李晓娟

展开 >

新疆医科大学,乌鲁木齐 830017

新疆维吾尔自治区人民医院放射影像中心,乌鲁木齐 830001

冠心病 心肌缺血 深度学习 易损斑块 CT-FFR CCTA

新疆维吾尔自治区自然科学基金新疆维吾尔自治区人民医院院内项目

2022D01C84120220108

2024

新疆医科大学学报
新疆医科大学

新疆医科大学学报

CSTPCD
影响因子:0.76
ISSN:1009-5551
年,卷(期):2024.47(1)
  • 18