首页|基于精细化特征信息提取的健康和病害肉快速判别方法

基于精细化特征信息提取的健康和病害肉快速判别方法

扫码查看
[目的]针对健康肉与病害肉的快速鉴别问题,本文对健康与病害肉的表面拉曼谱图的特征信息提取和分类方法进行研究,以实现对健康肉与病害肉的快速鉴别.[方法]以羊肉的表面增强拉曼谱图为样本,分别采用主成分分析-支持向量机和卷积神经网络两种方法进行分类.通过提取谱图的精细化特征,实现谱图数据的降维和干扰信息的过滤,为分类模型提供更加准确和丰富的特征信息.并以240份包含健康与病害羊肉的拉曼谱图为训练集样本,建立了分类模型,以另外的120份样本进行健康与病害肉的辨别效果验证.[结果]实验表明经过精细化特征提取后构建的主成分分析-支持向量机模型能清晰的找到健康与病害肉的分类边界,验证样本的识别准确率从82.5%上升到93.3%,同时使用卷积神经网络对精细化提取的特征进行学习与分类,识别准确率从常规方法的90.2%上升到95.5%.[结论]本文提出的基于表面增强拉曼的肉类谱图的精细化特征信息提取和分类方法能够有效实现对羊肉样品中健康肉与病害肉的快速分类和鉴别,该方法同样可以应用于其他肉类的检测分类,对保障食品安全具有重要的意义.
Fast identification method of healthy and diseased meat based on refined feature information extraction
[Objective]Aiming at the rapid identification of healthy and diseased meat,herein we investigate the information extraction and classification methods of the surface Raman spectra of healthy and diseased meat.[Methods]Taking the surface-enhanced Raman spectrogram of mutton as a sample,we use two methods,principal component analysis-support vector machine and convolutional neural network for classification,respectively.Through the refined feature extraction of the spectrogram,the filtering of the spectrogram degradation and interference information is accomplished,thus providing more accurate and rich feature information for the classification model.In the experimental validation,240 Raman spectra containing healthy and diseased mutton were used as the training set samples to build the classification model,and other 120 samples were used to validate the identification effect between healthy and diseased meat.[Results]Experiments show that the principal component analysis-support vector machine model constructed after refined feature extraction can clearly find the classification boundary between healthy and diseased meat,and the recognition accuracy of the validation samples rises from 82.5%to 93.3%.At the same time,if the convolutional neural network that learns and classifies refined extracted features is used,the recognition accuracy rises from 90.2%,achieved by the conventional method,to 95.5%.[Conclusions]The refined feature information extraction and classification method of meat spectra based on surface-enhanced Raman proposed herein can effectively achieve the rapid classification and identification of healthy and diseased meat in mutton samples.Additionally,it can be applied to the detection and classification of other meats,and this application leads to great potential in guaranteeing food safety.

diseased meat detectionprincipal component analysisRaman spectrumconvolutional neural network

薛文东、洪德明、陈本能、洪永强、艾连峰、陈美芳、王鑫

展开 >

厦门大学航空航天学院,福建厦门 361005

石家庄海关技术中心,河北石家庄 050057

河北医科大学公共卫生学院,河北石家庄 050013

病害肉检测 主成分分析 拉曼谱图 卷积神经网络

2024

厦门大学学报(自然科学版)
厦门大学

厦门大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.449
ISSN:0438-0479
年,卷(期):2024.63(2)
  • 18