首页|自适应二次反馈控制下的驱动响应网络脉冲同步

自适应二次反馈控制下的驱动响应网络脉冲同步

扫码查看
[目的]为了提高控制效率,研究时滞和非时滞驱动响应网络脉冲同步的自适应二次反馈控制.[方法]本文运用了 Lyapunov函数、椭球边界点参数化和脉冲微分比较定理,研究了在时滞和非时滞情况下驱动响应网络的脉冲同步问题.[结果]在本文所设计的自适应二次反馈控制器的作用下,驱动网络系统和响应网络系统在椭球体ε((P))={e∈Rn2:eT(P)e≤1}内达到同步.以单能源系统为网络节点,含二次项的自适应脉冲控制比不含二次项的自适应脉冲控制误差更小,同步更快.[结论]对于驱动响应网络脉冲同步的自适应反馈控制问题,引入二次项的反馈控制器可以提高同步速度,降低同步误差.
Impulsive synchronization of drive-response networks under adaptive quadratic feedback control
[Objective]The research of impulsive synchronization in complex networks has obtained abundant achievements,but there are few results on impulsive synchronization in drive-response complex networks driven by adaptive quadratic feedback control.Compared to the results of conventional impulsive synchronization,the control efficiency is better improved by designing a new adaptive secondary feedback controller.[Methods]In this paper,the Lyapunov function,the parameterization of ellipsoid boundary points and the theorem of impulse differential are applied to study the impulsive synchronization problem of time-delay and non-time-delay drive-response complex networks.[Results]With the adaptive quadratic feedback controller and adaptive law designed in this paper,By two theorems we can conclude that the error system is asymptotically stable in both time-delay and non-time-delay cases such that the trajectories of drive-response complex networks do not run out of the ellipsoid and are synchronized within the ellipsoidε((P))={e ∈Rn2:eT(P)e ≤ 1 }.We provide a framework for dealing with complex network synchronization problems with both quadratic terms and impulsive control.Finally,taking the single energy system as the nodes of the networks,a numerical example is given to verify the effectiveness and feasibility of the obtained results.[Conclusions]We can see that the system reaches synchronization faster with adaptive impulsive control containing a quadratic term.

drive-response networksadaptivequadratic feedback controlimpulsive synchroni-zation

胡娜、黄振坤、赵玲

展开 >

集美大学理学院,福建 厦门 361021

驱动响应网络 自适应 二次反馈控制 脉冲同步

国家自然科学基金福建省自然科学基金

615730052019J01330

2024

厦门大学学报(自然科学版)
厦门大学

厦门大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.449
ISSN:0438-0479
年,卷(期):2024.63(2)
  • 22