首页|空间分布阶时间分数阶扩散方程的高精度算法

空间分布阶时间分数阶扩散方程的高精度算法

扫码查看
[目的]目前空间分布阶方程的求解多为时间整数阶,且空间的收敛阶大多为二阶和三阶,很难达到四阶,为了提高Riesz空间分布阶Caputo时间分数阶扩散方程求解过程中的空间收敛精度,提出一种高阶的有限差分法.[方法]基于数值解法对Caputo时间分数阶导数采用L1插值逼近离散;分布阶导数利用复化Simpson求积公式,将分布阶微分方程转化为一个多项Riesz空间分数阶导数的微分方程;从而构造方程的高阶数值离散格式,并运用矩阵分析的方法证明该数值格式具有稳定性和收敛性.[结果]在求解该分布阶微分方程中,该数值方法使得空间和分布阶的收敛阶达都达到了四阶,时间上的收敛阶达到了 2-β阶.[结论]本文构造出的Riesz空间分布阶Caputo时间分数阶扩散方程的高阶差分格式,可使得空间上的收敛阶达到四阶,适用于高精度求解场景.
High precision algorithm for spatial distributed-order time fractional diffusion equation
[Objective]Effectively,distributed-order differential equations can describe anomalous diffusion phenomena in multifractal media.Regarding the solution of spatial distributed-order equations,we find that the integer order is mostly studied in the time domain,whereas the spatial convergence order is mostly second and third orders,resulting in difficulties to achieve fourth order.To improve the spatial convergence accuracy in solving the Riesz spatial distributed-order Caputo time fractional diffusion equation,herein we propose a high-order finite difference method.[Methods]By using the composite Simpson quadrature formula,the distributed differential equation is transformed into a multi-term fractional derivative differential equation in Riesz space,and the fractional derivative of Caputo time is approximated by LI interpolation.Next,the high-order numerical discrete scheme of the equation is constructed and the stability and convergence of the scheme are proved by the matrix analysis.Finally,a numerical example is given to demonstrate the stability and convergence of the scheme.[Results]In solving this distributed-order differential equation,our numerical method achieves a spatial convergence order of four for both spatial and distributed orders,and a time convergence order of 2-a.[Conclusions]We construct a high-order difference format for the Riesz spatial distributed-order Caputo time fractional diffusion equation and achieve a spatial convergence order of four.Because distributed-order equations with spatial convergence orders have been studied mostly at the second or third order,the effectiveness of the proposed method is observed.

distributed-orderthe finite differencestabilityconvergence

龚珊珊、陈景华、刘欣然

展开 >

集美大学理学院,福建厦门 361021

集美大学理学院数字福建大数据建模与智能计算研究所

福建厦门 361021

分布阶 有限差分 稳定性 收敛性

福建省自然科学基金福建省自然科学基金福建省教育厅项目集美大学校级基金集美大学校级基金集美大学数字福建大数据建模与智能计算研究所开放基金

2022J013382020J01703JAT210231ZP2020054ZP2020062

2024

厦门大学学报(自然科学版)
厦门大学

厦门大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.449
ISSN:0438-0479
年,卷(期):2024.63(2)
  • 21