首页|Calabi-Eckmann流形上度量的一些性质

Calabi-Eckmann流形上度量的一些性质

扫码查看
[目的]Kaehler流形已经被广泛研究,但是非Kaehler流形还没有得到很大程度的研究.Calabi-Eckmann流形由Calabi和Eckmann引入,并首先研究其上的复结构及相关的性质.近年来有不少关于Calabi-Eckmann流形上的复子流形,上同调以及形变的研究.本文研究Calabi-Eckmann流形上度量的一些性质.将Hopf流形的相应结果推广到了Calabi-Eckmann流形上,在Hopf流形的研究中都利用了它是其万有覆盖空间Cn\{0}在其基本群作用下的商空间这个事实,但这个方法不能推广到Calabi-Eckmann流形,因为它是一个单连通的非Kaehler流形.[方法]利用Calabi-Eckmann流形具有S2m+1×S2n+1的形式,它可作为CPm ×CPn上以椭圆曲线S1 × S1为纤维的复解析纤维丛,构造了底空间CPm × CPn流形上整体定义的(1,1)Kaehler形式,由此得到整体定义的体积形式,并由CPm ×CPn流形上Kaehler形式构造了 Calabi-Eckmann流形上的Kaehler形式ω.[结果]证明了 Calabi-Eckmann流形其底空间流形上的全纯淹没的拉回不是ddc正合的,由此得到Calabi-Eckmann流形不是多重闭的;并证明了对于Calabi-Eckmann流形上的Kaehler形式ω成立ddcω≤0,从而得到Calabi-Eckmann流形是多重负定的.[结论]Calabi-Eckmann流形的度量还有一些值得进一步研究的性质,可以利用本文构造Calabi-Eckmann流形上整体的Kaehler形式ω研究由它诱导的度量是否是平衡和1-对称的.
Some properties of the metric on Calabi-Eckmann manifolds
[Objective]Although Kaehler manifolds have been extensively studied,non-Kaehler manifolds have not been.Calabi-Eckmann manifolds were introduced by Calabi and Eckmann,and their complex structures and related properties were first studied.In recent years,numerous studies on complex submanifolds,cohomology,and deformation on Calabi-Eckmann manifolds have emerged.In this article,we study some properties of metrics on Calabi-Eckmann manifolds.Corresponding results of Hopf manifolds are extended to Calabi-Eckmann manifolds,and the fact that it is a quotient space of its universal covering spaceCn\{0} under the action of its fundamental group is used in the study of Hopf manifolds.Unfortunately,this method cannot be extended to Calabi-Eckmann manifolds because it is a simply connected non-Kaehler manifold.[Methods]Herein,we use the Calabi-Eckmann manifold with the form of S2m+1×S2n+1,which can be considered as a complex analytic fiber bundle with elliptic curves S1 X S1 as fibers over CPm X CPn.Then,we construct a globally defined(1,1)Kaehler form on the base space manifold CPm X CPn,obtain a globally defined volume form,and finally construct a Kaehler form on the Calabi-Eckmann manifold pullded back from a Kaehler form on CPm XCPn.[Results]We prove that the holomorphic immersions of the Calabi-Eckmann manifold on its base space manifold are not ddc-exact,and thus the Calabi-Eckmann manifold is non-pluriclosed.Additionally,we prove that for a Kaehler form ω on the Calabi-Eckmann manifold,ddcω≤0,and thus establish that the Calabi-Eckmann manifold is plurinegative.[Conclusion]Some properties of the metric of Calabi-Eckmann manifolds deserve further investigations.Hopefully,the proposed global Kaehler form can be used to study whether the induced metric is balanced and 1-symmetric.

Calabi-Eckmann manifoldKähler formpluriclosed flowplurinegative flow

甘宁

展开 >

集美大学理学院,福建厦门 361021

Calabi-Eckmann流形 Kahler形式 多重闭流 多重负定流

2024

厦门大学学报(自然科学版)
厦门大学

厦门大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.449
ISSN:0438-0479
年,卷(期):2024.63(6)