首页|基于深度学习的多视图火焰面三维重建

基于深度学习的多视图火焰面三维重建

扫码查看
针对火焰面三维重建时存在背景噪点的问题,提出了一种基于MVSNet多视图三维重构网络的IM-MVSNet网络用于重构层流火焰的火焰面.该网络通过对输入采样图像的参考帧以及邻域帧进行图像分割,去除采样时的背景噪声,得到高质量分割图像,然后将多视图图像进行三维重建,构建层流火焰面三维点云,进而得到重构的层流火焰面.通过不同重构模型火焰面重构效果对比,本文提出的三维重构网络能够有效减少重构火焰面的点云噪点,提高火焰面重构精度,为燃烧研究提供了一种新的方法.
Multi-view 3D Reconstruction of the Flame Surface Based on Deep Learning
To address the background noise in the 3D reconstruction of the flame surface,an IM-MVSNet network based on the MVSNet multi-view 3D reconstruction network was proposed for reconstructing the flame surface of laminar flow flames.The network obtained high-quality segmented images by image segmentation of the reference frames and neighboring frames of the input sampled images to remove the background noise during sampling,and then reconstructed the multi-view images in 3D to build a 3D point cloud of the laminar flame surface,and then obtained the reconstructed laminar flame surface.The reconstruction results of the flame surface of different reconstruction models show that the 3D reconstruc-tion network proposed in this paper can effectively reduce the point cloud noise of the reconstructed flame surface,improve the reconstruction accuracy of the flame surface,and provide a new technical means for combustion research.

Multi-view3D reconstruction networkDeep learningPoint cloudBackground noise

宋泠澳、刘涛、姜东、李华东、赵冬梅、谢建鞍

展开 >

西南科技大学计算机科学与技术学院 四川绵阳 621010

中国航发四川燃气涡轮研究院 四川绵阳 621703

多视图 三维重构网络 深度学习 点云 背景噪声

中国航发四川燃气涡轮研究院稳定支持项目西南科技大学博士基金西南科技大学博士基金

GJCZ-2022-000418zx716421zx7107

2024

西南科技大学学报
西南科技大学

西南科技大学学报

影响因子:0.348
ISSN:1671-8755
年,卷(期):2024.39(1)
  • 21