首页|基于联邦学习的多线路高速列车转向架故障诊断

基于联邦学习的多线路高速列车转向架故障诊断

扫码查看
单一线路高速列车转向架缺少足量故障数据特征,导致故障诊断模型泛化能力有限,为实现诊断多条线路高速列车的转向架故障,提出一种基于联邦学习的转向架全局故障诊断方法.针对每条线路各自的转向架振动信号,在本地使用多尺度卷积融合算法,提取不同尺度下的故障特征并融合,在本地建立局部转向架故障诊断模型;在不泄露数据隐私的前提下,所有线路的故障诊断模型通过第三方聚合,调整模型参数权重,对故障诊断模型进行优化,最终实现多方联合训练转向架全局故障诊断模型.实验表明:在联邦学习框架下,转向架全局故障诊断模型不仅对参与联邦建模的线路转向架故障诊断准确率达到 93%以上,而且对于未参与联邦建模的线路转向架故障诊断率也可达到 75%以上,给轨道交通中的"数据孤岛"问题提供了一种切实可行的方案.
Fault Diagnosis of Multiple Railway High Speed Train Bogies Based on Federated Learning
To solve the problem of limited generalization ability of fault diagnosis model caused by the lack of sufficient fault data characteristics of single railway high-speed train bogie,and to realize the diagnosis of bogie faults of multiple railway high-speed trains,a global bogie fault diagnosis method based on federated learning is proposed in this work.Firstly,according to the bogie vibration signals of each railway,the multi-scale convolution fusion algorithm is conducted locally to extract and fuse the fault features at different scales,and the bogie fault diagnosis model is established locally.On the premise of not divulging data privacy,the fault diagnosis models of all railways are aggregated by the third party,the weights of model parameter are adjusted,the fault diagnosis models are optimized,and finally the global fault diagnosis model of bogie is jointly trained by multiple railways.The experiments show that under the federated learning framework,the fault diagnosis accuracy of the global bogie fault diagnosis model is reach more than 93% for the railway participating in federated modeling,and more than 75% for the railway not participating in,which provides a practical scheme for the'data island'problem in railway transportation.

federated learningfault diagnosisbogiehigh speed train

杜家豪、秦娜、贾鑫明、张一鸣、黄德青

展开 >

西南交通大学电气工程学院,四川成都 611756

联邦学习 故障诊断 转向架 高速列车

国家自然科学基金国家自然科学基金四川省科技计划四川省科技计划中央高校基本科研业务费

62173279U19342212022YFG02472021JDJQ00122682021ZTPY027

2024

西南交通大学学报
西南交通大学

西南交通大学学报

CSTPCD北大核心
影响因子:0.973
ISSN:0258-2724
年,卷(期):2024.59(1)
  • 2
  • 4