首页|基于多目标遗传算法的8×8 S盒的优化设计方法

基于多目标遗传算法的8×8 S盒的优化设计方法

扫码查看
混沌系统具有非线性、伪随机性、初始值敏感等特性,为基于动力系统构造性能良好的S盒提供了基础,进一步保证了分组加密算法安全性.目前,基于混沌构造S盒的方法大多数针对单个性能指标进行优化,难以获得全面的性能提升.针对此问题,结合混沌映射与多目标遗传算法,提出了一种新的S盒设计方法.首先,利用混沌映射的特性产生初始S盒种群;然后,以S盒的非线性度和差分均匀性为优化目标,基于遗传算法框架对上述两指标进行优化.针对S盒的特点,在优化算法中引入了交换操作,设计了新的变异操作以及非支配序集计算,有效提升了 S盒的非线性度和差分均匀性.实验结果表明该算法产生的S盒其差分均匀度为6,非线性度值至少为110,有效提升了 S盒的综合性能.
Optimal Design Method of 8 × 8 S-box Based on Multi-objective Genetic Algorithm
Chaotic systems have the characteristics of nonlinearity,pseudo-randomness and sensitivity to initial values,which provides an anchor to construct S-boxes based on dynamic system and secures block encryption algorithms.At present,most chaos-based S-box construction methods is designed to optimize single performance index,making it hard to improve the overall performance.To solve this,a new S-box design method is proposed by combining chaotic mapping and multi-objective genetic algorithm.Firstly,the initial S-box population is generated according to the characteristics of chaotic mapping;then,nonlinearity and difference uniformity of S-boxes are optimized under the framework of the genetic algorithm.According to the characteristics of the S-boxes,the exchange operation is introduced into the optimization algorithm,and a new mutation operation and calculation of non-dominated ordered sets are designed,effectively improving the nonlinearity and difference uniformity of the S-boxes.The experimental results show that the difference uniformity of the generated S-box is 6 and its nonlinearity is at least 110,demonstrating an improvement in the overall performance of the S-boxes.

S-boxnonlinearitydifference uniformitymulti-objective genetic algorithmchaotic map

王永、王明月、龚建

展开 >

重庆邮电大学计算机科学与技术学院,重庆 400065

桂林电子科技大学广西密码学与信息安全重点实验室,广西桂林 541004

S盒 非线性度 差分均匀度 多目标遗传算法 混沌映射

国家自然科学基金重庆市自然科学基金广西密码学与信息安全重点实验室基金

61472464cstc2021jcyjmsxmX0557GCIS201908

2024

西南交通大学学报
西南交通大学

西南交通大学学报

CSTPCD北大核心
影响因子:0.973
ISSN:0258-2724
年,卷(期):2024.59(3)
  • 2