首页|基于注意力机制的三维点云模型对应关系计算

基于注意力机制的三维点云模型对应关系计算

扫码查看
针对现有深度学习方法计算非刚性点云模型间稠密对应关系时精度不高,且算法泛化能力较差的问题,提出一种基于特征序列注意力机制的无监督三维点云模型对应关系计算新方法.首先,使用特征提取模块提取输入点云模型对的特征;然后,通过Transformer模块捕获自注意力和交叉注意力,学习共同上下文信息,并由对应关系预测模块生成软映射矩阵;最后,重构模块根据得到的软映射矩阵重构点云模型,并利用无监督损失函数完成训练.在FAUST、SHREC'19和SMAL数据集上的实验结果表明,本算法的平均对应误差分别为 5.1、5.8和5.4,均低于 3D-CODED、Elementary Structures和CorrNet3D经典算法;本算法所计算的非刚性三维点云模型间对应关系准确率更高,且具有更强的泛化能力.
Correspondence Calculation of Three-Dimensional Point Cloud Model Based on Attention Mechanism
The existing deep learning methods have low precision and poor generalization ability in calculating dense correspondence between non-rigid point cloud models.To address these issues,a novel method for calculating unsupervised three-dimensional(3D)point cloud model correspondence based on a feature sequence attention mechanism was proposed.Firstly,the feature extraction module was used to extract the features of the input point cloud model pair.Secondly,the transformer module learned context information by capturing self-attention and cross-attention and generated a soft mapping matrix through the correspondence prediction module.Finally,the reconstruction module reconstructed the point cloud model based on the obtained soft mapping matrix and used the unsupervised loss function to complete training.The experimental results on FAUST,SHREC'19,and SMAL datasets show that the average correspondence errors of this algorithm are 5.1,5.8,and 5.4,respectively,which are lower than those of the classical algorithms including 3D-CODED,Elementary Structures,and CorrNet3D.The correspondence between non-rigid 3D point cloud models calculated by the proposed algorithm has higher accuracy and stronger generalization ability.

computer visioncorrespondenceunsupervisedpoint cloud reconstructionattention mechanism

杨军、高志明、李金泰、张琛

展开 >

兰州交通大学电子与信息工程学院,甘肃 兰州 730070

兰州交通大学测绘与地理信息学院,甘肃 兰州 730070

计算机视觉 对应关系 无监督 点云重构 注意力机制

国家自然科学基金项目国家自然科学基金项目兰州市人才创新创业项目兰州交通大学天佑创新团队项目

42261067618620392020-RC-22TY202002

2024

西南交通大学学报
西南交通大学

西南交通大学学报

CSTPCD北大核心
影响因子:0.973
ISSN:0258-2724
年,卷(期):2024.59(5)
  • 3