首页|基于时频Grad-CAM的调制识别网络可解释分析

基于时频Grad-CAM的调制识别网络可解释分析

扫码查看
针对时频深度学习调制识别方法存在可解释性差的问题,提出一种基于时频梯度加权类激活映射(Grad-CAM)的调制识别网络可解释框架.该框架通过时频Grad-CAM可视化深度模型中隐含层的关键特征,从视觉上解释网络隐含层提取的时频深度特征对于正确与错误识别中的作用,揭示低信噪比环境下网络性能下降的内在机理,并通过量化和排序网络中每层不同卷积核的贡献值来判断网络的冗余程度.仿真实验结果验证了基于时频Grad-CAM的调制识别网络可解释性框架的有效性;可解释分析结果表明,在低信噪比环境下,网络特征提取区域有大量噪声存在,且本文所测试的调制识别网络冗余程度较为严重.
Interpretability of Modulation Recognition Network Based on Time-Frequency Gradient-Weighted Class Activation Mapping
Aiming at the poor interpretability of modulation recognition methods based on time-frequency deep learning,an interpretable framework of a modulation recognition network is proposed,utilizing time-frequency gradient-weighted class activation mapping(Grad-CAM).Through the key features of the hidden layer in the Grad-CAM visual deep model,the significance of the deep features extracted from the network hidden layer are illustrated in terms of correct and error recognition,revealing the decline of network performance in the environment of low signal-to-noise ratio(SNR).The contribution values of different convolution cores at each network layer are quantified and sorted to determine the network redundancy.The simulation results verify the interpretable framework of the time-frequency deep learning network for modulation recognition.The interpretable analysis results reflect that there is a large amount of noise present in the feature extraction region of the network in a low signal-to-noise ratio environment,and the tested modulation recognition network exhibits a high degree of redundancy.

interpretable deep learningGrad-CAMmodulation recognitiontime frequency analysis

梁先明、倪帆、陈文洁、张家树

展开 >

中国电子科技集团公司第十研究所,四川成都,610036

西南交通大学信息科学与技术学院,四川成都,610031

西南交通大学计算机与人工智能学院,四川成都,610031

可解释深度学习 梯度类加权激活映射 调制识别 时频分析

国家自然科学基金项目四川省自然科学基金项目

620713962022NSFSC0531

2024

西南交通大学学报
西南交通大学

西南交通大学学报

CSTPCD北大核心
影响因子:0.973
ISSN:0258-2724
年,卷(期):2024.59(5)
  • 2