首页|基于多源特征门控融合的软件缺陷预测

基于多源特征门控融合的软件缺陷预测

扫码查看
随着当前软件开发规模的增大和复杂度的不断提高,如何在保证效率的同时提高软件质量成为软件工程领域研究的重点和难点。软件缺陷预测是软件质量保障的重要研究方向,旨在帮助软件从业人员预测软件产品中潜在的缺陷模块,从而更有效地分配测试资源。已有研究主要提取软件特征来建立缺陷预测模型,但通常仅使用单一类型特征作为模型输入,并且缺乏特征的有效融合,导致缺陷预测的性能有待提高。提出了 一种基于多源特征门控融合的软件缺陷预测方法(DP-GM),首先利用抽象语法树和词嵌入模型得到代码语义表示;然后,采用门控循环单元(GRU)对语义特征向量和传统特征向量进行特征提取;最后,利用门控机制融合多源特征来训练模型并进行软件缺陷预测。实验结果表明,与当前具有代表性的三个基线方法相比较,提出的方法在召回率和F1值分别高出最优基线方法35。3%和10。5%。因此,提出的方法可提升软件缺陷预测的准确性,帮助软件从业者提高开发效益。
Software defect prediction using multi-source feature gating fusion
With the increasing scale and complexity of current software development,improving software quality while ensuring efficiency has become a focus and challenge in the field of software engineering.Software defect prediction is an important re-search direction in software quality assurance,aiming to help software practitioners anticipate potential defective modules in soft-ware products and allocate testing more effectively.Previous studies have mainly extracted software features to build defect pre-diction models,but typically only utilized single-type features as model inputs,and lacked effective feature integration,leading to the need for improvement in defect prediction performance.This paper proposed a software defect prediction method based on multi-source feature gating fusion(DP-GM).Firstly,abstract syntax trees and word embedding models were utilized to obtain code semantic representations.Then,gated recurrent unit(GRU)was employed to extract features from semantic feature vectors and traditional feature vectors.Finally,a gating mechanism was used to fuse multi-source features to train the model and perform software defect prediction.Experimental results showed that compared to three representative baseline methods,the proposed method improved recall and F1 value by 35.3%and 10.5%respectively.Therefore,the method proposed in this paper could enhance the accuracy of software defect prediction and help software practitioners improve development efficiency.

software defect predictionmulti-source feature fusiongate neural network

李英玲、巴依斯勒、张禾、邵俊铭、王子翱、蔡牧昕

展开 >

西南民族大学计算机科学与工程学院,四川成都 610041

西南民族大学计算机系统国家民委重点实验室,四川成都 610041

软件缺陷预测 多源特征融合 门控神经网络

国家自然科学基金&&

62302408S202310656058

2024

西南民族大学学报(自然科学版)
西南民族大学

西南民族大学学报(自然科学版)

CSTPCD
影响因子:0.441
ISSN:2095-4271
年,卷(期):2024.50(3)