首页|基于深度学习的恶意URL检测与研究

基于深度学习的恶意URL检测与研究

扫码查看
在数字化时代,网络安全问题尤为突出,特别是恶意URL的广泛传播对个人隐私和企业安全构成严重威胁。尽管现有研究在英文环境下取得了进展,但中文网络环境的研究相对较少,且缺乏大规模的中文网URL数据集。为了填补这一空白,本研究构建了一个大规模的中文网URL数据集,并提出了一种基于双向长短期记忆网络(BiLSTM)和注意力增强卷积神经网络(Attention-augmented CNN)的混合模型(BiAC),用于检测恶意URL。BiAC模型通过深度融合BiLSTM捕捉的时序和语法特征,以及Attention-augmented CNN提取的语义特征,显著提升了检测的准确性和效率。实验结果显示,BiAC模型在恶意中文网URL检测任务上具有97。53%的准确率和93。05%的F1 Score,超越了传统模型。这一成果不仅验证了模型设计的有效性,也凸显了构建专门针对中文环境的数据集的重要性,对提升网络安全防护能力具有重要的现实意义和应用价值。
Malicious URL detection and research based on deep learning
In the digital era,cybersecurity issues are particularly prominent,with the widespread dissemination of malicious URLs posing a significant threat to personal privacy and enterprise security.While research in English-language environments has progressed,studies on Chinese online environments remain relatively scarce,and there is a lack of large-scale Chinese URL datasets.To address this gap,this research constructed a large-scale Chinese online URL dataset and proposed a hybrid model(BiAC)based on Bidirectional Long Short-Term Memory Networks(BiLSTM)and Attention-augmented Convolutional Neural Networks(CNN)for detecting malicious URLs.The BiAC model significantly enhanced detection accuracy and efficiency by deeply integrating the temporal and grammatical features captured by BiLSTM with the semantic features extracted by Attention-augmented CNN.Experimental results showed that the BiAC model achieved a remarkable accuracy of 97.53%and an F1 Score of 93.05%on the task of detecting malicious Chinese online URLs,surpassing traditional models.This achievement not only validated the effectiveness of the model design but also highlighted the importance of constructing datasets specifically tailored for Chinese environments.It has significant practical implications and application value for enhancing cybersecurity protection capabilities.

deep learningmalicious URL detectionconvolutional neural networks(CNN)

校景中、胡鑫、张亮、吴宜融

展开 >

西南民族大学计算机与人工智能学院,四川 成都 610041

深度学习 恶意URL检测 卷积神经网络

2024

西南民族大学学报(自然科学版)
西南民族大学

西南民族大学学报(自然科学版)

CSTPCD
影响因子:0.441
ISSN:2095-4271
年,卷(期):2024.50(6)