首页|基于自然局部核密度比离群因子的离群检测算法

基于自然局部核密度比离群因子的离群检测算法

扫码查看
针对现有离群点检测算法对分布不均匀的离群点难识别和参数依赖问题,提出了一种基于自然核密度比离群因子的离群检测算法。首先,利用自然邻居搜索算法自适应确定邻域参数k,并计算数据对象与其k最近邻居的局部密度。随后,将数据对象的局部密度与其自然邻居比较,若低于自然邻居中的最大密度,则更新比较对象为自然邻居中最高密度者。持续该过程,直到比较对象的最高密度小于或等于其自身密度,此时终止比较,此过程中所有对象的自然邻居构成原始数据对象的扩展自然邻居,所找到的最高密度对象称为局部自然核心点。最后,结合邻域数量对数据对象离群度的影响,将每个数据对象的局部自然核心点与其本身密度的比率作为离群因子,衡量数据对象的离群程度。人工数据集和真实数据集上的实验表明,该方法的F1得分高于对比算法,在离群点检测方面表现出良好的性能。
Outlier detection algorithm based on natural local core density ratio outlier factor
To address the challenges of recognizing unevenly distributed outliers and parameter dependency in existing outlier detection algorithms,a novel outlier detection algorithm was proposed based on the natural core density ratio outlier factor(ND-OF).The natural neighbor search algorithm was employed to adaptively determine the neighborhood parameter and compute the local density of data objects and their nearest neighbors.Subsequently,the local density of each data object was compared with its natural neighbors.If the object's density was lower than the maximum density among its natural neighbors,the comparison object was updated to the neighbor with the highest density.This iterative process continued until the highest density among the comparison objects was less than or equal to the object's own density,at which point the comparison process terminated.The natural neighbors involved in this process constituted the extended natural neighbors of the original data object,and the object with the highest density was identified as the local natural core point.Finally,the ratio of the local natural core point's density to the data object's density,combined with the influence of neighborhood size on outlier degree,was used as the outlier factor to measure the degree of outliers.Experiments on artificial and real datasets showed that the method had a higher F1 score than the comparison algorithms and showed good performance in outlier detection.

outlier detectionnatural neighboroutlier factor

蒲瑞、徐嘉、杨力军、李天朔、李景逸

展开 >

西南民族大学计算机与人工智能学院,四川成都 610041

西南民族大学数学学院,四川成都 610041

离群点检测 自然邻居 离群因子

2024

西南民族大学学报(自然科学版)
西南民族大学

西南民族大学学报(自然科学版)

CSTPCD
影响因子:0.441
ISSN:2095-4271
年,卷(期):2024.50(6)