首页|移动边缘计算场景下基于深度强化学习的服务功能链动态编排研究

移动边缘计算场景下基于深度强化学习的服务功能链动态编排研究

扫码查看
移动边缘计算(MEC)是第五代移动通信技术(5G)的关键技术之一,在靠近用户的一侧提供低时延的网络服务。为了解决移动边缘计算场景下,边缘设备物理资源受限、网络资源时变导致网络服务交付困难的问题,针对服务功能链(SFC)的编排,提出了面向受限物理网络的服务功能链编排架构,综合考虑了网络的性能约束和边缘设备的计算资源、存储资源约束,构建了服务功能链编排的一般模型,提出基于深度强化学习(DRL)算法的服务功能链动态编排算法。仿真结果表明,所提出的算法在满足约束条件的情况下,端到端的时延降低了 18%,同时降低了计算资源和存储资源的占用。
Research on dynamic orchestration of service function chain based on deep reinforcement learning in mobile edge computing scenarios
Mobile edge computing(MEC)is one of the key technologies of the fifth generation of mobile communication technol-ogy(5G)to provide low-latency network services on the side close to the user.In order to solve the problem of difficult network service delivery due to physical resource constraints of edge devices and time-varying network resources in mobile edge compu-ting scenarios,a service function chain orchestration architecture for constrained physical networks was proposed for service function chain(SFC)orchestration,and a general model of service function chain orchestration was constructed by comprehen-sively considering the performance constraints of the network and the computational and storage resource constraints of the edge devices.A dynamic service function chaining algorithm based on deep reinforcement learning(DRL)algorithm was proposed.The simulation results showed that the proposed algorithm reduced end-to-end latency by 18%and reduced the occupancy of computing and storage resources while satisfying constraint conditions.

mobile edge computingsoftware-defined networkingnetwork function virtualizationservice function chainingdeep reinforcement learning

尹翔宇、陈曦、陈海浩、高旻、王沛林、吴涛

展开 >

西南民族大学计算机与人工智能学院,四川成都 610041

电子科技大学信息与通信工程学院,四川成都 611731

四川见山科技有限责任公司,四川成都 610213

成都信息工程大学计算机学院,四川 成都 610225

展开 >

移动边缘计算 软件定义网络 网络功能虚拟化 服务功能链 深度强化学习

2024

西南民族大学学报(自然科学版)
西南民族大学

西南民族大学学报(自然科学版)

CSTPCD
影响因子:0.441
ISSN:2095-4271
年,卷(期):2024.50(6)