首页|基于时间逻辑框架的离线深度强化学习在金融市场算法交易中的研究

基于时间逻辑框架的离线深度强化学习在金融市场算法交易中的研究

扫码查看
深度强化学习(Deep Reinforcement Learning,DRL)可以有效地处理高度复杂、非线性和动态的金融市场中存在的大量序列数据。为了降低与实时交互相关的风险并提高处理序列数据的能力,提出了一种基于时间逻辑框架的离线深度强化学习交易框架。该框架结合了 DRL和长短期记忆(Long Short-Term Memory,LSTM)、Transformer深度神经网络来处理大量金融序列数据,并在离线环境中进行训练和评估。训练和评估在不同的时间段进行,使用原油期货和棉花期货两个数据集。结果表明,该框架在多个风险和回报指标上优于DRL和基准交易策略。
Research of offline deep reinforcement learning based on time logic framework in financial market algorithmic trading
Deep Reinforcement Learning(DRL)can effectively deal with large amounts of sequence data in highly complex,non-linear and dynamic financial markets.To reduce the risks associated with real-time interactions and improve the ability to process sequential data,an offline deep reinforcement learning transaction framework was proposed based on a temporal logic framework.The framework combined DRL with Long Short-Term Memory(LSTM)and Transformer deep neural networks to process large amounts of financial sequence data and train and evaluate them in an offline environment.The training and evalua-tion were conducted over different time periods,using two data sets,crude oil futures and cotton futures.The results showed that the framework outperformed DRL and benchmark trading strategies on several risk and return metrics.

deep reinforcement learningoffline reinforcement learningartificial neural networksalgorithmic trading

王子瑞、李萍

展开 >

西南民族大学计算机科学与人工智能学院,四川成都 610041

西南民族大学数学学院,四川 成都 610041

深度强化学习 离线强化学习 人工神经网络 算法交易

2024

西南民族大学学报(自然科学版)
西南民族大学

西南民族大学学报(自然科学版)

CSTPCD
影响因子:0.441
ISSN:2095-4271
年,卷(期):2024.50(6)