首页|基于CCA与PCA模型的岩溶地区农业结构演变及其驱动力分析

基于CCA与PCA模型的岩溶地区农业结构演变及其驱动力分析

扫码查看
[目的]为分析贵州省1949-2013年农业结构演变特征及其驱动力,对农业种植的供给侧结构性改革提供科学的决策依据.[方法]本文利用CCA模型对影响农业产量结构演变的13个驱动因子重要性进行降维排序,并利用PCA模型分析主要驱动因子与农业结构的时序相关性.[结果]①贵州省1949-2013年农业结构呈现出种植业比重波动下降,畜牧业比重上升的趋势,种植业中水稻比重由1949年的75.7%逐步下降至2013年的59.9%,经济作物中水果和烟叶的年均增长率分别为6.93%和10.52%;②在对各驱动因子CCA降维的基础上,得出主要驱动因子排序结果依次为人均GDP、年均气温、种植面积、农业人口比重、新造林面积、年降水量;③通过PCA将CCA主要驱动因子划分成3类主成分,其贡献率分别达到47.83%、19.44%和16.69%,累计贡献率达到83.95%,表明社会经济因素对农业结构演变的影响程度更高,农业结构对自然环境的适应能力提升,依赖性减弱.[结论]保护有限的耕地资源,发展高效山地生态农业,提升农业抗旱能力与市场化水平,将成为岩溶地区农业结构演变的主要趋势.
Analysis of Agricultural Structure Evolution and Driving Forces in Karst Area Based on CCA and PCA Model
[Objective] The evolution of agricultural structure in Guizhou province is affected by various factors,such as large proportion of rural population,steep slopes,high quality arable land and fragile ecological environment.The present paper was to analyze the evolution characteristics and driving forces of agricultural structure in Guizhou Province during 1949-2013,and provided scientific basis for the structural reform of supply side.[Method] In this paper,the CCA model was used to reduce the dimension of the 13 driving factors which influenced evolution of agricultural production structure,and the PCA model was used to analyzed the correlation between main driving factors and agricultural structure.[Results] Firstly,there is a trend of decline in the proportion of farming,and a rise in the proportion of husbandry in agri-cultural structure in Guizhou Province from 1949 to 2013.The proportion of rice planting decreased from 75.7 % in 1949 to 59.9 % in 2013.The average annual growth of fruit and tobacco plantation was 6.93 % and 10.52 % respectively in economic crops.Secondly,on the basis of CCA reduced dimension of each driving factors,the ranking results of main driving factors were GDP,annual average temperature,planting area,proportion of agricultural population,new forestation area and annual precipitation.Thirdly,the main driving factors were divided into 3 main components by PCA model,and their contribution rate reached 47.83 %,19.44 % and 16.69 % respectively,and cumulative contribution rate reached 83.95 %,which shown the influence of social economic factors on evolution of agricultural structure was higher,and adaptability of agricultural structure to natural environment has promoted,and the dependence was weakened.[Conclusion] Limited arable land resources protection,efficient mountain ecological agriculture development,enhancing the level of agricultural drought resistance will become main trend of agricultural structure evolution in karst area.

KarstAgricultural structureDriving forceDCAPCA

邓灵稚、苏维词、杨振华

展开 >

重庆师范大学地理与旅游学院,重庆沙坪坝400047

贵州省山地资源研究所,贵州贵阳550001

贵州师范大学喀斯特研究院,贵州贵阳550001

岩溶 农业结构 驱动力 DCA PCA

国家自然科学基金贵州省重大专项

41261038黔科合重大专项字[20126015号

2017

西南农业学报
四川,云南,贵州,广西,西藏及重庆省(区,市)农科院

西南农业学报

CSTPCDCSCD北大核心
影响因子:0.679
ISSN:1001-4829
年,卷(期):2017.30(4)
  • 1
  • 18