首页|基于自适应滤波器的皮带机动态称重信号处理方法

基于自适应滤波器的皮带机动态称重信号处理方法

扫码查看
针对目前皮带机动态称重系统的称重信号存在噪声或干扰的问题,提出了一种改进自适应噪声消除(IANC)的称重信号处理方法.建立了皮带机动态称重系统动态响应过程的数学模型.设计了结合卡尔曼和最小均方的算法(KF-LMS),提升了 ANC噪声消除的性能.实验阶段,通过模拟和搭建实验平台对所提方法进行测试.结果表明,与 LMS,NLMS,SLMS等算法相比,所提的KF-LMS算法在皮带机动态称重信号处理中具有良好性能,具备较高的可靠性和称重精度.实验结果验证了所提方法的有效性和实用性,该模型具有广阔的应用前景.
A Signal Processing Method for Dynamic Weighing of Belt Conveyor Based on Adaptive Filter
Aiming at the problem of noise and interference in the weighing signal of the current belt conveyor dynamic weighing system,an improved adaptive noise cancellation(IANC)weighing signal processing method was proposed in this work.A mathematical model for the dynamic response process of the belt conveyor dynamic weighing system was established.We de-signed a combination of Kalman filter and least mean square(KF-LMS)algorithm to improve the performance of ANC noise cancellation.In the experimental stage,the proposed method was tested through simulation and an experimental platform.The results show that the proposed KF-LMS method outperforms algorithms such as LMS,NLMS,and SLMS in the dynamic weighing signal processing of belt conveyor systems,showcasing excellent performance,higher reliability,and weighing preci-sion.The experimental results have verified the effectiveness and practicality of the proposed method,and the method has broad application prospects.

belt conveyordynamic weighing systemsignal processingadaptive noise cancellationKalman filteringmini-mum mean square

刘圣煌

展开 >

国能(天津)港务有限责任公司,天津 300450

皮带机 动态称重系统 信号处理 自适应噪声消除 卡尔曼滤波 最小均方

河南省科技开放合作项目

172106000056

2024

西南师范大学学报(自然科学版)
西南大学

西南师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.805
ISSN:1000-5471
年,卷(期):2024.(1)
  • 25