首页|一种基于联合预测的简历实体识别方法

一种基于联合预测的简历实体识别方法

扫码查看
目前个人简历实体类型繁多,大量平面实体和嵌套实体交错在简历中,对实体识别产生了不小的负面影响.为此,设计了一种联合预测的命名实体识别框架.首先,利用预训练模型 Mengzi-BERT进行上下文的词嵌入表示.为了充分利用预训练模型提取的特征,先对网络深度进行压缩,放大卷积层感受野,并且融合了自注意力机制,然后设计了一个新的命名实体识别模型 TPDCA(triple layers progressive dilated convolutional neural network-atten-tion).其次,为防止实体之间跨度过大、简历实体嵌套等问题,设计了全新的基于Biaffine双仿射注意力机制的局部关系实体识别模型BCN(biaffine-based local relationship capture network).最后,通过分别调整 TPDCA模型和BCN局部关系识别模型的预测权重进行联合预测,构成 Mengzi-TPDCA-CRF-BCN 联合预测框架,获得了综合表现最佳的实体识别结果.这样设计避免了模型丢失实体间长距离依赖关系,降低了平面实体和嵌套实体相互交错对预测的负面影响,解决了实体类型间的高耦合度影响识别任务的问题.该模型与现行主流方法相比各评价指标提升了 3%,有效地解决了简历实体类型间耦合度高,实体间跨度大的实际问题.
A Resume Entity Recognition Method Based on Co-Prediction
Purpose:At present,there is a multitude of entity types in individual resumes,with a significant presence of both flat and nested entities intertwined.This complexity has had a considerable negative impact on entity recognition.Method:We designed ajointly predicted named entity recognition framework.First,the pretrained model Mengzi-BERT was used to express the word embedding of the context.To make full use of the features extracted by the pre-trained model,we compressed the network depth,enlarged the receptive field of the convolutional layers,and incorporated a self-attention mechanism.Subse-quently,a new named entity recognition model,TPDCA(triple layers progressive dilated convolutional neural network-atten-tion),is designed.Simultaneously,to prevent excessively large spans between entities and addressing the issue of nested enti-ties in resumes,based on the Biaffine bidirectional affine attention mechanism,a novel model for local relationship entity recog-nition named BCN(biaffine-based local relationship capture network)had been designed.Finally,a joint prediction framework,Mengzi-TPDCA-CRF-BCN,was constructed by separately adjusting the prediction weights of the TPDCA model and the BCN local relation recognition model.This framework exhibits the best overall performance in entity recognition.This method avoids the model losing long-distance dependencies between entities,reduces the negative impact of the intertwined flat and nested en-tities on predictions,and resolves the issue of high coupling between entity types affecting the recognition task.Conclusion:Compared to the current mainstream methods,the model proposed in this paper has shown a 3%improvement in various evaluation metrics,effectively addressing the practical issues of high coupling between entity types and large spans between entities in resumes.

natural language processingpretrained modelnamed entity recognitiondeep learningresume informationco-prediction

黄康洲、周刚、范永胜

展开 >

重庆师范大学 计算机与信息科学学院,重庆 401331

重庆师范大学 地理与旅游学院,重庆 401331

自然语言处理 预训练模型 命名实体识别 深度学习 简历信息 联合预测

国家社科基金项目

21XZW002

2024

西南师范大学学报(自然科学版)
西南大学

西南师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.805
ISSN:1000-5471
年,卷(期):2024.(1)
  • 38