首页|面向社交网络重要信息传播的重叠节点挖掘模型研究

面向社交网络重要信息传播的重叠节点挖掘模型研究

扫码查看
针对动态社交网络中的社区检测问题,提出一种面向社交网络重要信息传播的重叠节点挖掘模型(SNONMM),结合标签传播算法(LPA)和扩散激活原理,实现对动态社交网络中重叠社区的高效检测.该模型的新节点在社交网络中向其他节点传播其标签的机会大于旧节点,从而使新节点更容易被发现并纳入相应的社区.同时,引入激活值来表示每个标签的传播强度,有助于更准确地捕捉社区结构的变化.为了验证该方法的有效性,通过两个真实数据集和一个人工合成网络对其性能进行评估.实验结果表明,该方法在检测社区准确性方面优于其他可用方法.
Research on Overlapping Node Mining Model for Important Information Dissemination in Social Networks
This paper addresses the problem of community detection in dynamic social networks and propo-ses a Social Network Overlapping Node Mining Model(SNONMM),and aims at the efficient detection of overlapping communities in dynamic social networks.The model combines the Label Propagation Algo-rithm(LPA)and the Spreading Activation principle to achieve efficient detection of overlapping communi-ties in dynamic social networks.In this approach,new nodes have a greater chance of spreading their la-bels to other nodes in the social network than that of old nodes,making new nodes more easily discovered and incorporated into their respective communities.At the same time,activation values are introduced to represent the propagation strength of each label,which helps to more accurately capture changes in com-munity structure.To validate the effectiveness of the proposed method,its performance was evaluated u-sing two real-world datasets and a synthetic network.Experimental results demonstrate that the proposed method outperforms other available methods in terms of community detection accuracy.

dynamic social networkscommunity detectionlabel propagation algorithmdiffusion activa-tion

魏会廷、陈永光

展开 >

许昌学院 实验室与设备管理中心,河南 许昌 461000

周口师范学院 教育科学学院,河南 周口 466001

动态社交网络 社区检测 标签传播算法 扩散激活

2024

西南师范大学学报(自然科学版)
西南大学

西南师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.805
ISSN:1000-5471
年,卷(期):2024.46(2)