首页|基于改进LSGAN模型的配电网测量缺失数据重构研究

基于改进LSGAN模型的配电网测量缺失数据重构研究

扫码查看
针对当前电力测量领域在缺失数据重构方面存在的效率低下和性能不佳的问题,本文提出了一种基于改进的最小二乘生成对抗网络(LSGAN)的缺失数据重构模型.该模型是在深入分析现有生成对抗网络缺点的基础上设计的,旨在通过改进算法使网络更加充分地学习数据之间的内在联系.为了提高训练的稳定性、加速计算的收敛速度以及提升生成数据的质量,本文将传统生成对抗网络(GAN)模型中的目标函数从交叉熵损失函数替换为最小二乘损失函数,并采用了一种新的距离度量方式.在实验阶段,与 GAN,CGAN和原始 LSGAN模型相比,所提出的改进 LSGAN模型在综合指标性能上表现最优.试验结果验证了该模型的实用性和出色性能,该模型可为电力测量缺失数据重构的研究和应用提供一定借鉴作用.
Research on Measurement Data Missing Reconstruction of Distribution Network Based on Improved LSGAN
A modified LSGAN missing data reconstruction model is proposed to address the issues of low efficiency and poor performance in current power measurement missing data reconstruction.On the basis of analyzing the shortcomings of existing generative adversarial networks,an improved least squares generative adversarial network is designed to fully learn the internal connections between data.In order to provide a more stable training,faster computational convergence,and higher data quality for the network,the objective function in the traditional GAN model was changed from the cross entropy loss function to the least squares loss function,and a new distance metric was adopted.In the experimental stage,compared with GAN,CGAN,and LSGAN models,the proposed improved LSGAN model has the best overall performance indicators.The experimental re-sults validate the practicality and excellent performance of the proposed model,which can provide some reference for the devel-opment of missing data reconstruction in power measurement.

distribution networkmissing datadata reconstructiongenerate adversarial networksleast square

汤晓前、吴远旭、姚少广、陈昶、潘峥

展开 >

金华送变电工程有限公司 三为金东电力分公司,浙江 金华 321015

配电网 缺失数据 数据重构 生成对抗网络 最小二乘

2024

西南师范大学学报(自然科学版)
西南大学

西南师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.805
ISSN:1000-5471
年,卷(期):2024.(3)