首页|知识编译中的SDD构建及其复杂度研究

知识编译中的SDD构建及其复杂度研究

扫码查看
本文针对知识编译中的句子决策图(SDD)进行了研究.首先,阐述了关于句子决策图的基本概念及其相关技术.然后,在此基础上提出了一般SDD的自下而上的构建方法.同时,算法还可选地压缩每个划分,以返回压缩后的SDD,并对未压缩SDD和规范、压缩SDD的Apply函数的复杂度进行了深入研究.理论研究表明:前者支持多项式时间Apply函数,后者具有指数级时间Apply函数的特性.最后,实验结果表明:尽管未压缩SDD的Apply函数具有多项式时间复杂度,但规范、压缩SDD的Apply函数能得到比未压缩SDD的Apply函数以及其他先进SDD构建方法更小的SDD和更短的编译时间.
Research on Construction and Complexity of SDD in Knowledge Compilation
This paper focus on the Sentential Decision Diagram(SDD)within the context of knowledge compilation.Specifical-ly,it begins by outlining the fundamental concepts of sentential decision diagrams along with their associated techniques.On this basis,the bottom-up construction method of general SDD is proposed.At the same time,the algorithm optionally com-presses each partition to return the compressed SDD.This study provides an in-depth analysis of the complexity of the Apply functions for both uncompressed SDD and normalized,compressed SDD.Theoretical research shows that the former supports polynomial time Apply function,while the latter has the characteristics of exponential time Apply function.The final experi-mental results show that although the Apply function of uncompressed SDD has polynomial time complexity,the Apply func-tion of normalized and compressed SDD can obtain smaller SDD size and less compilation time than the Apply function of un-compressed SDD and other advanced SDD construction methods.

artificial intelligenceknowledge compilationsentential decision diagramV-treeconjunctive/disjunctive normal formnormalizationcomplexitycompilation time

梁建华、杨文忠、赵宇

展开 >

达州中医药职业学院基础医学教育部,四川达州 635000

新疆大学信息科学与技术学院,乌鲁木齐 830046

驻重庆地区第五军代室,重庆 404000

人工智能 知识编译 句子决策图 V形树 合取/析取范式 规范性 复杂度 编译时间

2024

西南师范大学学报(自然科学版)
西南大学

西南师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.805
ISSN:1000-5471
年,卷(期):2024.(4)