首页|地层特征重构下的气井射孔位置回归优化

地层特征重构下的气井射孔位置回归优化

扫码查看
气井射孔位置关系到天然气开采过程中流体是否可以顺利流出,也是直接影响油气井产量的重要因素.为使气井位置满足油气开采要求,本文提出基于地层特征重构算法的气井射孔位置回归优化方法.该方法利用MAS(Full Name of MAS Management System)地质三维建模软件,通过定义地质单元体,以及生成地质单元体后得到的气井射孔位置地层特征和相关数据,依据该数据建立气井射孔位置回归模型,通过该模型描述气井射孔位置与实际位置的偏差关系,再使用遗传蚁群混合算法对气井射孔位置回归模型实施优化求解,实现气井射孔位置回归优化.实验结果表明:该方法可有效重构气井射孔位置地层特征,并可对气井射孔位置进行优化,优化后气井位置偏差量较小,具备较强的应用性.
Regression Optimization of Gas Well Perforation Position Under Geological Feature Reconstruction
The perforation position of a gas well is related to whether the fluid can flow out smoothly during natural gas extrac-tion and is also an important factor that directly affects the production of oil and gas wells.To ensure that the gas well position satisfies the requirements of oil and gas extraction,a regression optimization method for the perforation position of a gas well based on formation feature reconstruction algorithm is proposed.This method utilizes MAS geological 3D modeling software to define the geological unit bodies and generate geological unit bodies to obtain the stratigraphic characteristics of gas well perfo-ration positions and relevant data of gas well perforation positions.Based on this data,a gas well perforation position regression model can be established,which describes the deviation relationship between gas well perforation positions and actual positions.Then,a Genetic Ant Colony Hybrid Algorithm is used to optimize and solve the gas well perforation position regression model.Realize the regression optimization of gas well perforation position.The experimental results show that this method can effec-tively reconstruct the stratigraphic characteristics of the gas well perforation position and optimize the gas well perforation posi-tion.After optimization,the deviation of the gas well position is minimal,and the application effect is significant.

feature reconstructiongas well perforationgeological unit body3D modelingregression optimization methodsstratigraphic characteristicsgenetic ant colony algorithmregression model

谢波、梁帮治、杨强、段雨安

展开 >

西南油气田分公司 蜀南气矿,四川 泸州 646099

西安杰源石油工程有限公司,西安 710000

特征重构 气井射孔 地质单元体 三维模建 回归优化方法 地层特征 遗传蚁群算法 回归模型

2024

西南师范大学学报(自然科学版)
西南大学

西南师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.805
ISSN:1000-5471
年,卷(期):2024.(4)