首页|多属性栅格环境下基于改进蚁群算法的机器人节能路径规划

多属性栅格环境下基于改进蚁群算法的机器人节能路径规划

扫码查看
针对移动机器人在非结构化环境且有限能源下的任务执行效率问题,改进蚁群算法实现了节能路径规划.首先,在常规全局障碍物基础上考虑粗糙地形和非平坦地形因素,提出了一种多属性栅格地图建模方法;其次,为了减少机器人在非结构化环境中的全局路径规划成本,结合了路径长度、转向频率、地形高度以及地面粗糙度等与能耗相关的指标以优化传统蚁群算法的启发式函数;此外,考虑了机器人上坡时的势能需求、下坡过程中动能的回收、空气阻力与滚动摩擦力和能量转换效率等因素进一步优化了信息素的更新机制.仿真和实验结果表明,所提策略能够为移动机器人在非结构化环境下规划低能耗路径,对实际运用具有一定参考价值.
Low-Energy Path Planning for Robots Using an Improved Ant Colony Algorithm in Multi-Attribute Grid Environments
To reduce the energy consumption of mobile robots in unstructured environments and enhance their task efficiency under constrained energy resources,this paper presents a low-energy path planning method based on an improved Ant Colony Algorithm.Firstly,a multi-attribute grid map modeling approach is proposed,which accounts for rough and uneven terrain in addition to conventional global obstacles.Secondly,to further minimize the costs of global path planning in unstructured envi-ronments,energy-related factors such as path length,turning frequency,slope,and surface roughness are integrated into the heuristic function of the traditional Ant Colony Algorithm,optimizing it for energy efficiency.Moreover,the pheromone update mechanism is refined by considering various dynamic energy factors during robot movement,including potential energy require-ments for uphill motion,kinetic energy recovery on downhill slopes,air resistance,rolling friction,and energy conversion effi-ciency.Simulation and experimental results show that the proposed method can effectively plan optimal low-energy paths for mobile robots in multi-attribute grid environments,offering valuable insights for real-world applications.

mobile robotunstructured environmentant colony algorithmpath planning

梁玲、洪军

展开 >

山西工程职业学院 计算机工程系,太原 030009

中北大学 软件学院,太原03005

移动机器人 非结构化环境 蚁群算法 路径规划

2024

西南师范大学学报(自然科学版)
西南大学

西南师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.805
ISSN:1000-5471
年,卷(期):2024.(4)